Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Clin Med ; 10(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947025

RESUMO

BACKGROUND AND OBJECTIVE: To evaluate the reliability of compressed-sensing (CS) real-time single-breath-hold cine imaging for quantification of right ventricular (RV) function and volumes in congenital heart disease (CHD) patients in comparison with the standard multi-breath-hold technique. METHODS: Sixty-one consecutive CHD patients (mean age = 22.2 ± 9.0 (SD) years) were prospectively evaluated during either the initial work-up or after repair. For each patient, two series of cine images were acquired: first, the reference segmented multi-breath-hold steady-state free-precession sequence (SSFPref), including a short-axis stack, one four-chamber slice, and one long-axis slice; then, an additional real-time compressed-sensing single-breath-hold sequence (CSrt) providing the same slices. Two radiologists independently assessed the image quality and RV volumes for both techniques, which were compared using the Wilcoxon test and paired Student's t test, Bland-Altman, and linear regression analyses. The visualization of wall-motion disorders and tricuspid-regurgitation-related signal voids were also analyzed. RESULTS: The mean acquisition time for CSrt was 22.4 ± 6.2 (SD) s (95% CI: 20.8-23.9 s) versus 442.2 ± 89.9 (SD) s (95% CI: 419.2-465.2 s) for SSFPref (p < 0.001). The image quality of CSrt was diagnostic in all examinations and was mostly rated as good (n = 49/61; 80.3%). There was a high correlation between SSFPref and CSrt images regarding RV ejection fraction (49.8 ± 7.8 (SD)% (95% CI: 47.8-51.8%) versus 48.7 ± 8.6 (SD)% (95% CI: 46.5-50.9%), respectively; r = 0.94) and RV end-diastolic volume (192.9 ± 60.1 (SD) mL (95% CI: 177.5-208.3 mL) versus 194.9 ± 62.1 (SD) mL (95% CI: 179.0-210.8 mL), respectively; r = 0.98). In CSrt images, tricuspid-regurgitation and wall-motion disorder visualization was good (area under receiver operating characteristic curve (AUC) = 0.87) and excellent (AUC = 1), respectively. CONCLUSIONS: Compressed-sensing real-time cine imaging enables, in one breath hold, an accurate assessment of RV function and volumes in CHD patients in comparison with standard SSFPref, allowing a substantial improvement in time efficiency.

2.
Eur Radiol ; 30(1): 609-619, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31372784

RESUMO

OBJECTIVES: This study was conducted in order to evaluate the accuracy of a compressed sensing (CS) real-time single-breath-hold cine sequence for the assessment of left and right ventricular functional parameters in daily practice. METHODS: Cardiac magnetic resonance (CMR) cine images were acquired from 100 consecutive patients using both the reference segmented multi-breath-hold steady-state free precession (SSFP) acquisition and a prototype single-breath-hold real-time CS sequence, providing the same slice number, position, and thickness. For both sequences, the left (LV) and right ventricular (RV) ejection fractions (EF) and end-diastolic volumes (EDV) were assessed as well as LV mass (LVM). The visualization of wall-motion disorders (WMD) and signal void related to mitral or tricuspid regurgitation was also analyzed. RESULTS: The CS sequence mean scan time was 23 ± 6 versus 510 ± 109 s for the multi-breath-hold SSFP sequence (p < 0.001). There was an excellent correlation between the two sequences regarding mean LVEF (r = 0.995), LVEDV (r = 0.997), LVM (r = 0.981), RVEF (r = 0.979), and RVEDV (r = 0.983). Moreover, inter- and intraobserver agreements were very strong with intraclass correlations of 0.96 and 0.99, respectively. On CS images, mitral or tricuspid regurgitation visualization was good (AUC = 0.85 and 0.81, respectively; ROC curve analysis) and wall-motion disorder visualization was excellent (AUC ≥ 0.97). CONCLUSION: CS real-time single-breath-hold cine imaging reduces CMR scan duration by almost 20 times in daily practice while providing reliable measurements of both left and right ventricles. There was no clinically relevant information loss regarding valve regurgitation and wall-motion disorder depiction. KEY POINTS: • Compressed sensing single-breath-hold real-time cine imaging is a reliable sequence in daily practice. • Fast CS real-time imaging reduces CMR scan time and improves patient workflow. • There is no clinically relevant information loss with CS regarding heart valve regurgitation or wall-motion disorders.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Disfunção Ventricular/diagnóstico por imagem , Disfunção Ventricular/fisiopatologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Suspensão da Respiração , Feminino , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Estudos Prospectivos , Curva ROC , Reprodutibilidade dos Testes , Volume Sistólico , Disfunção Ventricular/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA