Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 44(12): 6744-6753, 2023 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-38098400

RESUMO

Lakes on the Inner Mongolia Plateau, located in the ecologically fragile area of the northern border of China, play a very important role in regulating the regional climate and ecological environment and maintaining biodiversity. Owing to the dual influence of natural factors and human factors, the lake water environment in Inner Mongolia is facing challenges. To clarify the overall water quality of lakes in Inner Mongolia, based on the water quality data of typical lakes in Inner Mongolia in autumn 2019(October-November) and summer 2021(July-August), the temporal and spatial variation in water quality was discussed, and the influence of different indexes on lake water quality was analyzed, and the key factors affecting lake water quality were identified. The results showed as follows:① the spatiotemporal distribution of multiple physicochemical indices of typical lakes in Inner Mongolia were different in the two seasons. On the time scale, the concentration of ammonia nitrogen(NH4+-N) and nitrite nitrogen(NO2--N) were lower in autumn than that in summer, whereas dissolved oxygen(DO) was higher in autumn than that in summer. On the spatial scale, the concentrations of total phosphorus(TP), total nitrogen(TN), chemical oxygen demand(COD), and salinity(Sal) and other indicators in the southwest lakes of Inner Mongolia were higher than those of lakes in the northeast, but the DO index showed the opposite trend. ② Dissolved total solids(TDS) was the main characteristic factor of water quality of typical lakes in Inner Mongolia. ③ The spatiotemporal distribution of lake water quality index(WQI) was significantly different. The lake water quality level decreased with the increase in TDS, and the lake water quality was better in autumn than that in summer.

2.
Huan Jing Ke Xue ; 43(11): 5073-5083, 2022 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-36437079

RESUMO

Lakes are an important water resource and biological habitat in the Tibetan Plateau. Owing to the combined influence of climate, topography, and other natural factors as well as human factors, the water environment of the lakes on the Tibetan Plateau is facing more and more severe problems and challenges. To clarify the present status, distribution pattern, main characteristic factors of water quality, and important factors affecting the water quality of lakes on the Tibetan Plateau, the water environment of 12 typical lakes on the Tibet Plateau was investigated in summer (July-August) and autumn (October-November) in 2020. The field sampling and laboratory test data comprehensive analysis showed that:① several physical and chemical parameters of typical lakes on the Tibetan Plateau differed in spatiotemporal distribution. ② Salinity was the main characteristic of water quality in the typical lakes on the Tibetan Plateau. ③ The spatiotemporal distribution of lake eutrophication index showed little diversity and basically ranged from poor nutrition to moderate nutrition. The spatial and temporal distributions in the lake water quality index (WQI) were significantly different. The lake WQI grade decreased from "Moderate" to "Very poor" with the increase in salinity area, and the lake water quality in autumn was better than that in summer. ④ The spatiotemporal differences in lake water quality on the Tibetan Plateau were mainly controlled by precipitation, evapoconcentration, and human activities. This study will provide scientific basis for water environment protection and improvement of water ecosystems on the Tibetan Plateau.


Assuntos
Lagos , Qualidade da Água , Humanos , Tibet , Ecossistema , Eutrofização
3.
J Environ Sci (China) ; 112: 355-365, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34955218

RESUMO

We measured the concentrations of Cr, Fe, Ni, Cu, Zn, Cd, Pb and Hg, and the stable isotope ratios (δ13C and δ15N) in 87 fish samples within 12 economic fish species collected from the Dongting Lake, the second largest freshwater lake in China. With few exceptions in concentration of Cr, most of fish species showed lower concentrations of the 8 metals than legislation thresholds. Piscivorous fishes had significantly higher values of δ15N (possessing higher trophic level) and metal concentrations than planktivorous and herbivorous fishes. Moreover, demersal fishes showed higher concentrations of Cu, Zn, Cd and Pb than pelagic and benthopelagic fishes. We found positive correlations between concentrations of Fe, Pb and Hg and δ15N ratio, confirming the biomagnification of the three metals through trophic transfer. In contrast, fishes showed clear growth dilution effect for Ni, Zn, Cu, Pb and Hg, indicated by the negative correlations between their concentrations and fish weight or length. Multiple regression analysis demonstrated that growth dilution and biomagnification effects simultaneously governed the metal concentrations in fish muscle, and the two effects' importance varied among different metals. The human health risk assessment indicated that all 8 metals gave target hazard quotient (THQ) values < 1.0, i.e., the estimated daily intake (EDI) of metals did not exceed the oral reference dose (RfD), indicating a safe consumption of these fish species for consumer. Our study provides comprehensive approaches to better understand the determining processes and potential risk of heavy metals in freshwater lake fishes.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Tamanho Corporal , China , Ecossistema , Monitoramento Ambiental , Peixes , Hábitos , Humanos , Lagos , Metais Pesados/análise , Medição de Risco , Poluentes Químicos da Água/análise
4.
J Environ Sci (China) ; 104: 335-350, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33985737

RESUMO

Trace metal contamination in water and bioaccumulation in aquatic organisms are human health risks of increasing concern. However, the bioaccumulation of trace metals in the organs of the mussel Cristaria plicata in Dongting Lake, China and the human health risks of mussel consumption are largely unknown. We investigated the concentrations of 15 trace metals and metalloids in surface water, sediments, and C. plicata organs (foot, gill, mantle, and visceral mass) and quantified the bioaccumulation and human health risk of these trace metals in specimens collected from Dongting Lake. The concentrations of most metals in surface water exceeded previously published background values. In contrast, the concentrations of most metals in sediments showed a decreasing trend. Overall, the metal concentrations in the gill and visceral masses of C. plicata were higher than those in the foot and mantle, and higher bioaccumulation capacities were observed for essential metals than for nonessential metals. The mean concentrations of the trace elements Zn, Pb, Cd, As, Cu, and Cr in C. plicata foot samples were lower than the threshold values established by international and Chinese organizations. The estimated daily intake (EDI) values of the essential metal Mn in C. plicata foot was higher than the recommended tolerable daily intake (TDI) values for juveniles. Only Mn for juveniles and As for both juveniles and adults may pose noncarcinogenic health risks through foot consumption. The hazard index (HI) values for adults and juveniles were higher than 1, suggesting significant risks of noncarcinogenic effects to humans by exposure to multiple metals.


Assuntos
Bivalves , Metais Pesados , Poluentes Químicos da Água , Adulto , Animais , Bioacumulação , China , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Lagos , Metais Pesados/análise , Medição de Risco , Poluentes Químicos da Água/análise
5.
Environ Sci Pollut Res Int ; 26(10): 10251-10262, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30761487

RESUMO

For decades, the river health of the Yellow River source region (YRSR) on the Qinghai-Tibetan Plateau has been a focal issue owing to its unique geographic location and ecological functions. This study investigated the ecological status of the headwater streams, the main stem, and the tributaries of the Yellow River in the YRSR using the tolerance values of macroinvertebrates and those related to biotic indices. The macroinvertebrate assemblages of the headwater streams were characterized by lower biodiversity than the tributaries downstream, based on comparisons of taxonomical composition, functional feeding group composition, and the pollution-tolerant capacity of taxa. The headwater streams had a lower ratio (16%) of pollution-sensitive macroinvertebrate taxa than that of the tributaries downstream (30%). The biotic indices (family- and genus-level biotic indices) indicated that the ecological health of the headwater streams was comparably poorer than that of the downstream tributaries. The combined effect of vulnerable natural conditions and increasing human disturbance is likely the main cause of eco-environmental degradation in the Yellow River headwater streams.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Biodiversidade , Monitoramento Ambiental , Invertebrados/crescimento & desenvolvimento , Rios/química , Animais , Organismos Aquáticos/classificação , China , Ecologia , Ecossistema , Poluição Ambiental , Invertebrados/classificação , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA