Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nanomaterials (Basel) ; 12(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234500

RESUMO

Microorganisms are the major cause for the failure of root canal treatment, due to the penetration ability within the root anatomy. However, irrigation regimens have at times failed due to the biofilm mode of bacterial growth. Liposomes are vesicular structures of the phospholipids which might help in better penetration efficiency into dentinal tubules and in increasing the antibacterial efficacy. Methods: In the present work, chlorhexidine liposomes were formulated. Liposomal chlorhexidine was characterized by size, zeta potential, and cryo-electron microscope (Cryo-EM). Twenty-one single-rooted premolars were extracted and irrigated with liposomal chlorhexidine and 2% chlorhexidine solution to evaluate the depth of penetration. In vitro cytotoxicity study was performed for liposomal chlorhexidine on the L929 mouse fibroblast cell line. Results: The average particle size of liposomes ranged from 48 ± 4.52 nm to 223 ± 3.63 nm with a polydispersity index value of <0.4. Cryo-EM microscopic images showed spherical vesicular structures. Depth of penetration of liposomal chlorhexidine was higher in the coronal, middle, and apical thirds of roots compared with plain chlorhexidine in human extracted teeth when observed under the confocal laser scanning microscope. The pure drug exhibited a cytotoxic concentration at which 50% of the cells are dead after a drug exposure (IC50) value of 12.32 ± 3.65 µg/mL and 29.04 ± 2.14 µg/mL (on L929 and 3T3 cells, respectively) and liposomal chlorhexidine exhibited an IC50 value of 37.9 ± 1.05 µg/mL and 85.24 ± 3.22 µg/mL (on L929 and 3T3 cells, respectively). Discussion: Antimicrobial analysis showed a decrease in colony counts of bacteria when treated with liposomal chlorhexidine compared with 2% chlorhexidine solution. Nano-liposomal novel chlorhexidine was less cytotoxic when treated on mouse fibroblast L929 cells and more effective as an antimicrobial agent along with higher penetration ability.

2.
AAPS PharmSciTech ; 23(1): 24, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907508

RESUMO

In order to be at pace with the market requirements of solid dosage forms and regulatory standards, a transformation towards systematic processing using continuous manufacturing (CM) and automated model-based control is being thought through for its fundamental advantages over conventional batch manufacturing. CM eliminates the key gaps through the integration of various processes while preserving quality attributes via the use of process analytical technology (PAT). The twin screw extruder (TSE) is one such equipment adopted by the pharmaceutical industry as a substitute for the traditional batch granulation process. Various types of granulation techniques using twin screw extrusion technology have been explored in the article. Furthermore, individual components of a TSE and their conjugation with PAT tools and the advancements and applications in the field of nutraceuticals and nanotechnology have also been discussed. Thus, the future of granulation lies on the shoulders of continuous TSE, where it can be coupled with computational mathematical studies to mitigate its complications.


Assuntos
Indústria Farmacêutica , Tecnologia Farmacêutica , Composição de Medicamentos , Tecnologia
3.
Artif Cells Nanomed Biotechnol ; 45(8): 1496-1508, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27846742

RESUMO

The present investigation deals with synthesis of graphene oxide (GO) and fabrication of GO-based hybrid nanocomposites (Ncs). Synthesized GO and Ncs were primarily confirmed by UV visible and Fourier transform infrared (FT-IR) spectroscopy. Fabricated Ncs showed potential antimicrobial activity against Gram-positive and Gram-negative bacterial strains. Surface morphology, Elemental analysis, and FTIR imaging analysis were carried out to confirm Ncs formation. The Ncs were impregnated into the pullulan polymeric layer-by-layer (LbL) ultrathin film by using novel spin-coating approach. Mechanical properties were determined using Brookfield texture analyzer, and percentage moisture content confirmed the physicochemical stability of LbL film.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Grafite/química , Nanocompostos/química , Antibacterianos/toxicidade , Quitosana/química , Células HeLa , Humanos , Nanocompostos/toxicidade , Óxidos/química , Tamanho da Partícula , Resistência à Tração , Água/química
4.
Pharm Dev Technol ; 20(5): 608-18, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24785784

RESUMO

Bicalutamide (BCM) is an anti-androgen drug used to treat prostate cancer. In this study, nanostructured lipid carriers (NLCs) were chosen as a carrier for delivery of BCM using Box-Behnken (BB) design for optimizing various quality attributes such as particle size and entrapment efficiency which is very critical for efficient drug delivery and high therapeutic efficacy. Stability of formulated NLCs was assessed with respect to storage stability, pH stability, hemolysis, protein stability, serum protein stability and accelerated stability. Hot high-pressure homogenizer was utilized for formulation of BCM-loaded NLCs. In BB response surface methodology, total lipid, % liquid lipid and % soya lecithin was selected as independent variable and particle size and %EE as dependent variables. Scanning electron microscopy (SEM) was done for morphological study of NLCs. Differential scanning calorimeter and X-ray diffraction study were used to study crystalline and amorphous behavior. Analysis of design space showed that process was robust with the particle size less than 200 nm and EE up to 78%. Results of stability studies showed stability of carrier in various storage conditions and in different pH condition. From all the above study, it can be concluded that NLCs may be suitable carrier for the delivery of BCM with respect to stability and quality attributes.


Assuntos
Antagonistas de Androgênios/administração & dosagem , Anilidas/administração & dosagem , Antineoplásicos/administração & dosagem , Portadores de Fármacos/química , Lipídeos/química , Nanoestruturas/química , Nitrilas/administração & dosagem , Compostos de Tosil/administração & dosagem , Antagonistas de Androgênios/química , Antagonistas de Androgênios/metabolismo , Anilidas/química , Anilidas/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Proteínas Sanguíneas/metabolismo , Portadores de Fármacos/metabolismo , Estabilidade de Medicamentos , Hemólise/efeitos dos fármacos , Nanoestruturas/ultraestrutura , Nitrilas/química , Nitrilas/metabolismo , Tamanho da Partícula , Ratos , Compostos de Tosil/química , Compostos de Tosil/metabolismo
5.
J Liposome Res ; 24(1): 37-52, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23941613

RESUMO

In the present investigation, a quality by design (QbD) strategy was successfully applied to the fabrication of chitosan-coated nanoliposomes (CH-NLPs) encapsulating a hydrophilic drug. The effects of the processing variables on the particle size, encapsulation efficiency (%EE) and coating efficiency (%CE) of CH-NLPs (prepared using a modified ethanol injection method) were investigated. The concentrations of lipid, cholesterol, drug and chitosan; stirring speed, sonication time; organic:aqueous phase ratio; and temperature were identified as the key factors after risk analysis for conducting a screening design study. A separate study was designed to investigate the robustness of the predicted design space. The particle size, %EE and %CE of the optimized CH-NLPs were 111.3 nm, 33.4% and 35.2%, respectively. The observed responses were in accordance with the predicted response, which confirms the suitability and robustness of the design space for CH-NLP formulation. In conclusion, optimization of the selected key variables will help minimize the problems related to size, %EE and %CE that are generally encountered when scaling up processes for NLP formulations. The robustness of the design space will help minimize both intra-batch and inter-batch variations, which are quite common in the pharmaceutical industry.


Assuntos
Quitosana/química , Sistemas de Liberação de Medicamentos , Lipossomos/química , Nanopartículas/química , Composição de Medicamentos , Indústria Farmacêutica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA