Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2256: 237-255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34014526

RESUMO

This chapter describes two computational methods for PDZ-peptide binding: high-throughput computational protein design (CPD) and a medium-throughput approach combining molecular dynamics for conformational sampling with a Poisson-Boltzmann (PB) Linear Interaction Energy for scoring. A new CPD method is outlined, which uses adaptive Monte Carlo simulations to efficiently sample peptide variants that tightly bind a PDZ domain, and provides at the same time precise estimates of their relative binding free energies. A detailed protocol is described based on the Proteus CPD software. The medium-throughput approach can be performed with standard MD and PB software, such as NAMD and Charmm. For 40 complexes between Tiam1 and peptide ligands, it gave high a2ccuracy, with mean errors of around 0.5 kcal/mol for relative binding free energies and no large errors. It requires a moderate amount of parameter fitting before it can be applied, and its transferability to other protein families is still untested.


Assuntos
Simulação de Dinâmica Molecular , Método de Monte Carlo , Domínios PDZ , Fragmentos de Peptídeos/metabolismo , Proteínas/metabolismo , Sequência de Aminoácidos , Humanos , Ligantes , Ligação Proteica , Conformação Proteica , Termodinâmica
2.
J Phys Chem A ; 124(51): 10637-10648, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33170681

RESUMO

We describe methods for physics-based protein design and some recent applications from our work. We present the physical interpretation of a MC simulation in sequence space and show that sequences and conformations form a well-defined statistical ensemble, explored with Monte Carlo and Boltzmann sampling. The folded state energy combines molecular mechanics for solutes with continuum electrostatics for solvent. We usually assume one or a few fixed protein backbone structures and discrete side chain rotamers. Methods based on molecular dynamics, which introduce additional backbone and side chain flexibility, are under development. The redesign of a PDZ domain and an aminoacyl-tRNA synthetase enzyme were successful. We describe a versatile, adaptive, Wang-Landau MC method that can be used to design for substrate affinity, catalytic rate, catalytic efficiency, or the specificity of these properties. The methods are transferable to all biomolecules, can be systematically improved, and give physical insights.


Assuntos
Proteínas/química , Algoritmos , Química Computacional , Interpretação Estatística de Dados , Simulação de Dinâmica Molecular , Método de Monte Carlo , Conformação Proteica , Dobramento de Proteína , Software , Termodinâmica
3.
J Chem Phys ; 149(7): 072302, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134674

RESUMO

For the high throughput design of protein:peptide binding, one must explore a vast space of amino acid sequences in search of low binding free energies. This complex problem is usually addressed with either simple heuristic scoring or expensive sequence enumeration schemes. Far more efficient than enumeration is a recent Monte Carlo approach that adaptively flattens the energy landscape in sequence space of the unbound peptide and provides formally exact binding free energy differences. The method allows the binding free energy to be used directly as the design criterion. We propose several improvements that allow still more efficient sampling and can address larger design problems. They include the use of Replica Exchange Monte Carlo and landscape flattening for both the unbound and bound peptides. We used the method to design peptides that bind to the PDZ domain of the Tiam1 signaling protein and could serve as inhibitors of its activity. Four peptide positions were allowed to mutate freely. Almost 75 000 peptide variants were processed in two simulations of 109 steps each that used 1 CPU hour on a desktop machine. 96% of the theoretical sequence space was sampled. The relative binding free energies agreed qualitatively with values from experiment. The sampled sequences agreed qualitatively with an experimental library of Tiam1-binding peptides. The main assumption limiting accuracy is the fixed backbone approximation, which could be alleviated in future work by using increased computational resources and multi-backbone designs.


Assuntos
Fragmentos de Peptídeos/química , Sindecana-1/química , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/química , Sequência de Aminoácidos , Método de Monte Carlo , Domínios PDZ , Ligação Proteica , Conformação Proteica , Termodinâmica
4.
J Chem Theory Comput ; 13(5): 2271-2289, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28394603

RESUMO

PDZ domains direct protein-protein interactions and serve as models for protein design. Here, we optimized a protein design energy function for the Tiam1 and Cask PDZ domains that combines a molecular mechanics energy, Generalized Born solvent, and an empirical unfolded state model. Designed sequences were recognized as PDZ domains by the Superfamily fold recognition tool and had similarity scores comparable to natural PDZ sequences. The optimized model was used to redesign the two PDZ domains, by gradually varying the chemical potential of hydrophobic amino acids; the tendency of each position to lose or gain a hydrophobic character represents a novel hydrophobicity index. We also redesigned four positions in the Tiam1 PDZ domain involved in peptide binding specificity. The calculated affinity differences between designed variants reproduced experimental data and suggest substitutions with altered specificities.


Assuntos
Domínios PDZ , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/química , Sequência de Aminoácidos , Sítios de Ligação , Guanilato Quinases/química , Guanilato Quinases/metabolismo , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Método de Monte Carlo , Ligação Proteica , Dobramento de Proteína , Alinhamento de Sequência , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA