Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 13: 1127256, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844407

RESUMO

Introduction: Lactobacilli are avid producers of antimicrobial compounds responsible for their adaptation and survival in microbe-rich matrices. The bactericidal or bacteriostatic ability of lactic acid bacteria (LAB) can be exploited for the identification of novel antimicrobial compounds to be incorporated in functional foodstuffs or pharmaceutical supplements. In this study, the antimicrobial and antibiofilm properties of Lactiplantibacillus pentosus L33, Lactiplantibacillus plantarum L125 and Lacticaseibacillus paracasei SP5, previously isolated form fermented products, were examined, against clinical isolates of Staphylococcus aureus, Salmonella enterica subsp. enterica serovar Enteritidis and Escherichia coli. Methods: The ability of viable cells to inhibit pathogen colonization on HT-29 cell monolayers, as well as their co-aggregation capacity, were examined utilizing the competitive exclusion assay. The antimicrobial activity of cell-free culture supernatants (CFCS) was determined against planktonic cells and biofilms, using microbiological assays, confocal microscopy, and gene expression analysis of biofilm formation-related genes. Furthermore, in vitro analysis was supplemented with in silico prediction of bacteriocin clusters and of other loci involved in antimicrobial activity. Results: The three lactobacilli were able to limit the viability of planktonic cells of S. aureus and E. coli in suspension. Greater inhibition of biofilm formation was recorded after co-incubation of S. enterica with the CFCS of Lc. paracasei SP5. Predictions based on sequence revealed the ability of strains to produce single or two-peptide Class II bacteriocins, presenting sequence and structural conservation with functional bacteriocins. Discussion: The efficiency of the potentially probiotic bacteria to elicit antimicrobial effects presented a strain- and pathogen-specific pattern. Future studies, utilizing multi-omic approaches, will focus on the structural and functional characterization of molecules involved in the recorded phenotypes.


Assuntos
Anti-Infecciosos , Bacteriocinas , Probióticos , Humanos , Lactobacillus , Escherichia coli/genética , Staphylococcus aureus , Lactobacillaceae , Bacteriocinas/farmacologia , Bacteriocinas/metabolismo , Anti-Infecciosos/metabolismo , Salmonella enteritidis , Probióticos/farmacologia
2.
Biomedicines ; 8(6)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560299

RESUMO

Air contamination in the hospital setting can be a reason for the spread of nosocomial infection among susceptible patients. The aim of this study was to identify bacterial species, and their load and drug resistance, in the air of a tertiary hospital. Air samples were collected on a monthly basis for 12 consecutive months in four different departments of the hospital (Intensive Care Unit (ICU), Internal Medicine Ward (IMW), Surgical Ward (SW), and Neonatal Unit (NU)). In total, 101 samples were collected, out of which 158 Gram-positive (GP) and 44 Gram-negative (GN) strains were isolated. The majority of GP isolates were Staphylococcus spp. (n = 100). The highest total microbial load was reported in the IMW (p = 0.005), while the highest Staphylococcus load was observed in the ICU (p = 0.018). GP bacterial load was higher in autumn, while GN load was higher in spring. Regarding drug resistance, four multi-drug-resistant (MDR) strains and one extensively drug-resistant (XDR) strain were isolated in the ICU, two MDR strains and one XDR strain in the SW, one MDR strain in the IMW and one MDR strain in the NU samples. Air in hospital settings is contaminated with various microbes; some of them are MDR, consisting a potential cause of hospital-acquired infection.

3.
Int J Gen Med ; 5: 175-82, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22419882

RESUMO

BACKGROUND: The first positive patient with influenza A (H1N1) was recorded in March 2009 and the pandemic continued with new outbreaks throughout 2010. This study's objective was to quantify the total cost of inpatient care and identify factors associated with the increased cost of the 2009-2010 influenza A pandemic in comparison with nonviral respiratory infection. METHODS: In total, 133 positive and 103 negative H1N1 patients were included from three tertiary care hospitals during the two waves of H1N1 in 2009 and 2010. The health costs for protective equipment and pharmaceuticals and hospitalization (medications, laboratory, and diagnostic tests) were compared between H1N1 positive and negative patients. RESULTS: The objective of the study was to quantify the means of daily and total costs of inpatient care. Overall, cost was higher for H1N1 positive (€61,0117.72) than for H1N1-negative patients (€464,923.59). This was mainly due to the protection measures used and the prolonged hospitalization in intensive care units. In H1N1-negative patients, main contributors to cost included additional diagnostic tests due to concern regarding respiratory capacity and laboratory values, as well as additional radiologic and microbial culture tests. The mean duration of hospitalization was 841 days for H1N1 positive and 829 days for negative patients. CONCLUSION: Cost was higher in H1N1 patients, mainly due to the protection measures used and the increased duration of hospitalization in intensive care units. An automated system to monitor patients would be desirable to reduce cost in H1N1 influenza.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA