Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 56(5): 667-679, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28459387

RESUMO

Numerous compounds have shown efficacy in limiting development of pulmonary fibrosis using animal models, yet few of these compounds have replicated these beneficial effects in clinical trials. Given the challenges associated with performing clinical trials in patients with idiopathic pulmonary fibrosis (IPF), it is imperative that preclinical data packages be robust in their analyses and interpretations to have the best chance of selecting promising drug candidates to advance to clinical trials. The American Thoracic Society has convened a group of experts in lung fibrosis to discuss and formalize recommendations for preclinical assessment of antifibrotic compounds. The panel considered three major themes (choice of animal, practical considerations of fibrosis modeling, and fibrotic endpoints for evaluation). Recognizing the need for practical considerations, we have taken a pragmatic approach. The consensus view is that use of the murine intratracheal bleomycin model in animals of both genders, using hydroxyproline measurements for collagen accumulation along with histologic assessments, is the best-characterized animal model available for preclinical testing. Testing of antifibrotic compounds in this model is recommended to occur after the acute inflammatory phase has subsided (generally after Day 7). Robust analyses may also include confirmatory studies in human IPF specimens and validation of results in a second system using in vivo or in vitro approaches. The panel also strongly encourages the publication of negative results to inform the lung fibrosis community. These recommendations are for preclinical therapeutic evaluation only and are not intended to dissuade development of emerging technologies to better understand IPF pathogenesis.


Assuntos
Congressos como Assunto , Modelos Animais de Doenças , Fibrose Pulmonar/terapia , Sociedades Médicas , Animais , Determinação de Ponto Final , Feminino , Humanos , Masculino , Organismos Geneticamente Modificados , Reprodutibilidade dos Testes
2.
Lancet Respir Med ; 3(6): 473-82, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26003389

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis is a progressive fibrotic lung disease that distorts pulmonary architecture, leading to hypoxia, respiratory failure, and death. Diagnosis is difficult because other interstitial lung diseases have similar radiological and histopathological characteristics. A usual interstitial pneumonia pattern is a hallmark of idiopathic pulmonary fibrosis and is essential for its diagnosis. We aimed to develop a molecular test that distinguishes usual interstitial pneumonia from other interstitial lung diseases in surgical lung biopsy samples. The eventual goal of this research is to develop a method to diagnose idiopathic pulmonary fibrosis without the patient having to undergo surgery. METHODS: We collected surgical lung biopsy samples from patients with various interstitial lung diseases at 11 hospitals in North America. Pathology diagnoses were confirmed by an expert panel. We measured RNA expression levels for 33 297 transcripts on microarrays in all samples. A classifier algorithm was trained on one set of samples and tested in a second set. We subjected a subset of samples to next-generation RNA sequencing (RNAseq) generating expression levels on 55 097 transcripts, and assessed a classifier trained on RNAseq data by cross-validation. FINDINGS: We took 125 surgical lung biopsies from 86 patients. 58 samples were identified by the expert panel as usual interstitial pneumonia, 23 as non-specific interstitial pneumonia, 16 as hypersensitivity pneumonitis, four as sarcoidosis, four as respiratory bronchiolitis, two as organising pneumonia, and 18 as subtypes other than usual interstitial pneumonia. The microarray classifier was trained on 77 samples and was assessed in a test set of 48 samples, for which it had a specificity of 92% (95% CI 81-100) and a sensitivity of 82% (64-95). Based on a subset of 36 samples, the RNAseq classifier had a specificity of 95% (84-100) and a sensitivity of 59% (35-82). INTERPRETATION: Our results show that the development of a genomic signature that predicts usual interstitial pneumonia is feasible. These findings are an important first step towards the development of a molecular test that could be applied to bronchoscopy samples, thus avoiding surgery in the diagnosis of idiopathic pulmonary fibrosis. FUNDING: Veracyte.


Assuntos
Pneumonias Intersticiais Idiopáticas/diagnóstico , Aprendizado de Máquina , Biópsia , Diagnóstico Diferencial , Feminino , Humanos , Pneumonias Intersticiais Idiopáticas/patologia , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA