Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38400299

RESUMO

Studying soil composition is vital for agricultural and edaphology disciplines. Presently, colorimetry serves as a prevalent method for the on-site visual examination of soil characteristics. However, this technique necessitates the laboratory-based analysis of extracted soil fragments by skilled personnel, leading to substantial time and resource consumption. Contrastingly, sensor techniques effectively gather environmental data, though they mostly lack in situ studies. Despite this, sensors offer substantial on-site data generation potential in a non-invasive manner and can be included in wireless sensor networks. Therefore, the aim of the paper is to develop a low-cost red, green, and blue (RGB)-based sensor system capable of detecting changes in the composition of the soil. The proposed sensor system was found to be effective when the sample materials, including salt, sand, and nitro phosphate, were determined under eight different RGB lights. Statistical analyses showed that each material could be classified with significant differences based on specific light variations. The results from a discriminant analysis documented the 100% prediction accuracy of the system. In order to use the minimum number of colors, all the possible color combinations were evaluated. Consequently, a combination of six colors for salt and nitro phosphate successfully classified the materials, whereas all the eight colors were found to be effective for classifying sand samples. The proposed low-cost RGB sensor system provides an economically viable and easily accessible solution for soil classification.

2.
Sensors (Basel) ; 23(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37447662

RESUMO

Essential oils are valuable in various industries, but their easy adulteration can cause adverse health effects. Electronic nasal sensors offer a solution for adulteration detection. This article proposes a new system for characterising essential oils based on low-cost sensor networks and machine learning techniques. The sensors used belong to the MQ family (MQ-2, MQ-3, MQ-4, MQ-5, MQ-6, MQ-7, and MQ-8). Six essential oils were used, including Cistus ladanifer, Pinus pinaster, and Cistus ladanifer oil adulterated with Pinus pinaster, Melaleuca alternifolia, tea tree, and red fruits. A total of up to 7100 measurements were included, with more than 118 h of measurements of 33 different parameters. These data were used to train and compare five machine learning algorithms: discriminant analysis, support vector machine, k-nearest neighbours, neural network, and naive Bayesian when the data were used individually or when hourly mean values were included. To evaluate the performance of the included machine learning algorithms, accuracy, precision, recall, and F1-score were considered. The study found that using k-nearest neighbours, accuracy, recall, F1-score, and precision values were 1, 0.99, 0.99, and 1, respectively. The accuracy reached 100% with k-nearest neighbours using only 2 parameters for averaged data or 15 parameters for individual data.


Assuntos
Óleos Voláteis , Teorema de Bayes , Aprendizado de Máquina , Algoritmos , Redes Neurais de Computação , Máquina de Vetores de Suporte
3.
Sensors (Basel) ; 23(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36850468

RESUMO

The monitoring of the coastal environment is a crucial factor in ensuring its proper management. Nevertheless, existing monitoring technologies are limited due to their cost, temporal resolution, and maintenance needs. Therefore, limited data are available for coastal environments. In this paper, we present a low-cost multiparametric probe that can be deployed in coastal areas and integrated into a wireless sensor network to send data to a database. The multiparametric probe is composed of physical sensors capable of measuring water temperature, salinity, and total suspended solids (TSS). The node can store the data in an SD card or send them. A real-time clock is used to tag the data and to ensure data gathering every hour, putting the node in deep sleep mode in the meantime. The physical sensors for salinity and TSS are created for this probe and calibrated. The calibration results indicate that no effect of temperature is found for both sensors and no interference of salinity in the measuring of TSS or vice versa. The obtained calibration model for salinity is characterised by a correlation coefficient of 0.9 and a Mean Absolute Error (MAE) of 0.74 g/L. Meanwhile, different calibration models for TSS were obtained based on using different light wavelengths. The best case was using a simple regression model with blue light. The model is characterised by a correlation coefficient of 0.99 and an MAE of 12 mg/L. When both infrared and blue light are used to prevent the effect of different particle sizes, the determination coefficient of 0.98 and an MAE of 57 mg/L characterised the multiple regression model.

4.
Sensors (Basel) ; 21(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34833712

RESUMO

In irrigation ponds, the excess of nutrients can cause eutrophication, a massive growth of microscopic algae. It might cause different problems in the irrigation infrastructure and should be monitored. In this paper, we present a low-cost sensor based on optical absorption in order to determine the concentration of algae in irrigation ponds. The sensor is composed of 5 LEDs with different wavelengths and light-dependent resistances as photoreceptors. Data are gathered for the calibration of the prototype, including two turbidity sources, sediment and algae, including pure samples and mixed samples. Samples were measured at a different concentration from 15 mg/L to 4000 mg/L. Multiple regression models and artificial neural networks, with a training and validation phase, are compared as two alternative methods to classify the tested samples. Our results indicate that using multiple regression models, it is possible to estimate the concentration of alga with an average absolute error of 32.0 mg/L and an average relative error of 11.0%. On the other hand, it is possible to classify up to 100% of the samples in the validation phase with the artificial neural network. Thus, a novel prototype capable of distinguishing turbidity sources and two classification methodologies, which can be adapted to different node features, are proposed for the operation of the developed prototype.


Assuntos
Monitoramento Ambiental , Eutrofização , Redes Neurais de Computação , Lagoas
5.
Sensors (Basel) ; 21(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34450891

RESUMO

Uncontrolled dumping linked to agricultural vehicles causes an increase in the incorporation of oils into the irrigation system. In this paper, we propose a system based on an optical sensor to monitor oil concentration in the irrigation ditches. Our prototype is based on the absorption and dispersion of light. As a light source, we use Light Emitting Diodes (LEDs) with different colours (white, yellow, blue, green, and red) and a photodetector as a sensing element. To test the sensor's performance, we incorporate industrial oils used by a diesel or gasoline engine, with a concentration from 0 to 0.20 mLoil/cm2. The experiment was carried out at different water column heights, 0 to 20 cm. According to our results, the sensor can differentiate between the presence or absence of diesel engine oil with any LED. For gasoline engine oil, the sensor quantifies its concentration using the red light source; concentrations greater than 0.1 mLoil/cm2 cannot be distinguished. The data gathered using the red LED has an average absolute error of 0.003 mLoil/cm2 (relative error of 15.8%) for the worst case, 15 cm. Finally, the blue LED generates different signals in the photodetector according to the type of oil. We developed an algorithm that combines (i) the white LED, to monitor the presence of oil; (ii) the blue LED, to identify if the oil comes from a gasoline or diesel engine; and (iii) the red LED, to monitor the concentration of oil used by a gasoline engine.

6.
Sensors (Basel) ; 18(9)2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-30150537

RESUMO

Determining and improving the wellbeing of people is one of the priorities of the OECD countries. Nowadays many sensors allow monitoring different parameters in regard to the wellbeing of people. These sensors can be deployed in smartphones, clothes or accessories like watches. Many studies have been performed on wearable devices that monitor certain aspects of the health of people, especially for specific diseases. In this paper, we propose a non-invasive low-cost and low-energy physical wellbeing monitoring system that provides a wellness score based on the obtained data. We present the architecture of the system and the disposition of the sensors on the sock. The algorithm of the system is presented as well. The wellness threshold evaluation module allows determining if the monitored parameter is within healthy ranges. The message forwarding module allows decreasing the energy consumption of the system by detecting the presence of alerts or changes in the data. Finally, a simulation was performed in order to determine the energy consumption of the system. Results show that our algorithm allows saving 44.9% of the initial energy in 10,000 min for healthy people.

7.
Sensors (Basel) ; 18(3)2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29494560

RESUMO

The monitoring of farming processes can optimize the use of resources and improve its sustainability and profitability. In fish farms, the water quality, tank environment, and fish behavior must be monitored. Wireless sensor networks (WSNs) are a promising option to perform this monitoring. Nevertheless, its high cost is slowing the expansion of its use. In this paper, we propose a set of sensors for monitoring the water quality and fish behavior in aquaculture tanks during the feeding process. The WSN is based on physical sensors, composed of simple electronic components. The system proposed can monitor water quality parameters, tank status, the feed falling and fish swimming depth and velocity. In addition, the system includes a smart algorithm to reduce the energy waste when sending the information from the node to the database. The system is composed of three nodes in each tank that send the information though the local area network to a database on the Internet and a smart algorithm that detects abnormal values and sends alarms when they happen. All the sensors are designed, calibrated, and deployed to ensure its suitability. The greatest efforts have been accomplished with the fish presence sensor. The total cost of the sensors and nodes for the proposed system is less than 90 €.


Assuntos
Aquicultura , Algoritmos , Animais , Internet , Qualidade da Água , Tecnologia sem Fio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA