Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Med ; 108: 102556, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36898289

RESUMO

The purpose of this work is to investigate the feasibility of spatio-temporal generalized Model Observer methods for protocol optimization programs in the field of interventional radiography. Two Model Observers were taken under examination: a Channelized Hotelling Observer with 24 spatio-temporal Gabor channels and a Non Pre-Whitening Model Observer with two different implementations of the spatio-temporal contrast sensitivity function. The images of targets, both stationary and in motion, were acquired in fluoroscopic mode using a CDRAD phantom for signal-present images and an homogenous slab of PMMA for signal-absent ones. After the processing, these images were used to build three series of two alternative forced choice experiments, designed to simulate tasks of clinical interest, and submitted to three human observers in order to set a goal on detectability. A first set of images was used for model tuning and subsequently the verified models were validated throughout a second set of images. Results from the validation phase, for both models, show good agreement with the human observer performances (Root Mean Square Error RMSE ≤ 12%). The tuning phase emerges as a crucial step in building models for angiographic dynamic images; the final agreement underlines the good capability of these spatio-temporal models in simulating human performances, allowing to consider them as a useful and worthwhile tool in protocol optimization when dynamic images are involved.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Processamento de Imagem Assistida por Computador/métodos , Variações Dependentes do Observador , Angiografia , Imagens de Fantasmas
2.
Phys Med ; 91: 28-42, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34710789

RESUMO

PURPOSE: The assessment of low-contrast-details is a part of the quality control (QC) program in digital radiology. It generally consists of evaluating the threshold contrast (Cth) detectability details for different-sized inserts, appropriately located in dedicated QC test tools. This work aims to propose a simplified method, based on a statistical model approach for threshold contrast estimation, suitable for different modalities in digital radiology. METHODS: A home-madelow-contrast phantom, made of a central aluminium insert with a step-wedge, was assembled and tested. The reliability and robustness of the method were investigated for Mammography, Digital Radiography, Fluoroscopy and Angiography. Imageswere analysed using our dedicated software developed on Matlab®. TheCth is expressed in the same unit (mmAl) for all studied modalities. RESULTS: This method allows the collection of Cthinformation from different modalities and equipment by different vendors, and it could be used to define typical values. Results are summarized in detail. For 0.5 diameter detail, Cthresults are in the range of: 0.018-0.023 mmAl for 2D mammography and 0.26-0.34 mmAl DR images. For angiographic images, for 2.5 mm diameter detail, the Cths median values are 0.55, 0.4, 0.06, 0.12 mmAl for low dose fluoroscopy, coronary fluorography, cerebral and abdominal DSA, respectively. CONCLUSIONS: The statistical method proposed in this study gives a simple approach for Low-Contrast-Details assessment, and the typical values proposed can be implemented in a QA program for digital radiology modalities.


Assuntos
Mamografia , Intensificação de Imagem Radiográfica , Imagens de Fantasmas , Controle de Qualidade , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA