Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Sens ; 9(1): 262-271, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38190731

RESUMO

Iron oxide nanoparticles (IONPs) have wide utility in applications from drug delivery to the rewarming of cryopreserved tissues. Due to the complex behavior of IONPs (e.g., uneven particle distribution and aggregation), further developments and clinical translation can be accelerated by having access to a noninvasive method for tissue IONP quantification. Currently, there is no low-cost method to nondestructively track IONPs in tissues across a wide range of concentrations. This work describes the performance of a low-cost, tabletop, longitudinally detected electron paramagnetic resonance (LOD-EPR) system to address this issue in the field of cryopreservation, which utilizes IONPs for rewarming of rat kidneys. A low-cost LOD-EPR system is realized via simultaneous transmit and receive using MHz continuous-wave transverse excitation with kHz modulation, which is longitudinally detected at the modulation frequency to provide both geometric and frequency isolation. The accuracy of LOD-EPR for IONP quantification is compared with NMR relaxometry. Solution measurements show excellent linearity (R2 > 0.99) versus Fe concentration for both measurements on EMG308 (a commercial nanoparticle), silica-coated EMG308, and PEG-coated EMG308 in water. The LOD-EPR signal intensity and NMR longitudinal relaxation rate constant (R1) of water are affected by particle coating, solution viscosity, and particle aggregation. R1 remains linear but with a reduced slope when in cryoprotective agent (CPA) solution, whereas the LOD-EPR signal is relatively insensitive to this. R1 does not correlate well with Fe concentration in rat kidney sections (R2 = 0.3487), while LOD-EPR does (R2 = 0.8276), with a linear regression closely matching that observed in solution and CPA.


Assuntos
Imageamento por Ressonância Magnética , Água , Espectroscopia de Ressonância de Spin Eletrônica , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Nanopartículas Magnéticas de Óxido de Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA