Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Toxicon ; 230: 107175, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37257518

RESUMO

Assam, a Northeastern State of India, is inhabited by several venomous snake species causing substantial morbidity and mortality. The data on the epidemiology of snakebites and their management is underreported in this region. Hence, a secondary health-based retrospective study was carried out at Demow Model Hospital, Sivasagar, Assam, to evaluate the clinical and epidemiological profile of snakebite cases reported in this rural hospital and their management. Snakebites occurring between April 2018 to August 2022 were reviewed based on socio-demographic details of the patient, clinical symptoms, and treatment using a standard questionnaire. Out of the 1011 registered snakebite cases, 139 patients (13.7%) counted for venomous bites, among which 92 patients (66.19%) accounted for viper bites (green pit viper and Salazar's pit viper), and 30 patients (21.5%) were bitten by elapid snakes (Indian monocled Cobra, banded krait, and greater/lesser black krait). A maximum number of snakebite cases (80.5%) were reported from the interior rural villages and documented from July to September (51.3%). Elapid snake envenomed patients, except one, were successfully treated with commercial antivenom, neostigmine, and glycopyrrolate. Because commercial polyvalent antivenom against "Big Four" venomous snakes of India showed poor neutralization of pit-vipers envenomation; therefore, pit-viper bite patients were treated with repurposed drugs magnesium sulfate and glycerin compression dressing. Adverse serum reactions were reported only in 3 (11.1%) cases. The preventive measures and facilities adopted at the Demow Model Hospital significantly reduce snakebite death and morbidity; therefore, they can be s practised across various states in India as a prototype.


Assuntos
Mordeduras de Serpentes , Animais , Antivenenos/uso terapêutico , Bungarus , Elapidae , Hospitais , Índia , Estudos Retrospectivos , Mordeduras de Serpentes/tratamento farmacológico
2.
Sci Rep ; 11(1): 18238, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521877

RESUMO

Snake envenomation is a severe problem in Sri Lanka (SL) and Indian polyvalent antivenom (PAV) is mostly used for treating snakebite albeit due to geographical variation in venom composition, Indian PAV shows poor efficacy in neutralizing the lethality and toxicity of venom from the same species of snakes in SL. Therefore, the quality and in vivo venom neutralization potency of a country-specific PAV produced against the venom of the five most medically important snakes of SL (Daboia russelii, Echis carinatus, Hypnale hypnale, Naja naja, Bungarus caeruleus) was assessed. LC-MS/MS analysis of two batches of PAV showed the presence of 88.7-97.2% IgG and traces of other plasma proteins. The tested PAVs contained minor amounts of undigested IgG and F(ab')2 aggregates, showed complement activation, were devoid of IgE, endotoxin, and content of preservative was below the threshold level. Immunological cross-reactivity and in vitro neutralization of enzymatic activities, pharmacological properties demonstrated superior efficacy of SL PAV compared to Indian PAV against SL snake venoms. The in vivo neutralization study showed that the tested PAVs are potent to neutralize the lethality and venom-induced toxicity of SL snake venoms. Therefore, our study suggests that introduction of SL-specific PAV will improve snakebite management in SL.


Assuntos
Antivenenos/química , Mordeduras de Serpentes/tratamento farmacológico , Venenos de Serpentes/toxicidade , Animais , Antivenenos/efeitos adversos , Antivenenos/uso terapêutico , Células Cultivadas , Ativação do Complemento , Contaminação de Medicamentos , Eritrócitos/efeitos dos fármacos , Feminino , Células HEK293 , Hemólise , Humanos , Masculino , Camundongos , Sri Lanka
3.
Drug Test Anal ; 13(8): 1471-1489, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34089574

RESUMO

Snakebite envenomation is a public health problem of high impact, particularly for the developing world. Antivenom, which contains whole or protease-digested immunoglobulin G, purified from the plasma of hyper-immunized animals (mainly horses), is the mainstay for the treatment of snakebite envenomation. The success of antivenom therapy depends upon its ability to abrogate or reduce the local and systemic toxicity of envenomation. In addition, antivenom administration must be safe for the patients. Therefore, antivenom manufacturers must ensure that these products are effective and safe in the treatment of envenomations. Antivenom efficacy and safety are determined by the physicochemical characteristics of formulations, purity of the immunoglobulin fragments and antibodies, presence of protein aggregates, endotoxin burden, preservative load, and batch to batch variation, as well as on the ability to neutralize the most important toxins of the venoms against which the antivenom is designed. In this context, recent studies have shown that laboratory-based simple analytical techniques, for example, size exclusion chromatography, sodium dodecyl sulphate polyacrylamide gel electrophoresis, mass spectrometry, immunological profiling including immuno-turbidimetry and enzyme-linked immunosorbent assays, Western blotting, immune-chromatographic technique coupled to mass spectrometry analysis, reverse-phase high performance liquid chromatography, spectrofluorometric analysis, in vitro neutralization of venom enzymatic activities, and other methodologies, can be applied for the assessment of antivenom quality, safety, stability, and efficacy. This article reviews the usefulness of different analytical techniques for the quality assessment of commercial antivenoms. It is suggested that these tests should be applied for screening the quality of commercial antivenoms before their preclinical and clinical assessment.


Assuntos
Antivenenos/análise , Técnicas de Química Analítica , Mordeduras de Serpentes/tratamento farmacológico , Animais , Humanos , Imunoglobulina G/química , Ciência de Laboratório Médico , Controle de Qualidade
4.
Toxicon ; 192: 15-31, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33417947

RESUMO

India has recorded the maximum snakebite deaths in the world. Intravenous administration of polyvalent antivenom (PAV) raised against the 'Big Four' venomous snakes of India (Naja naja, Daboia russelli, Echis carinatus, and Bungarus caeraleus) is the only choice of treatment. The WHO has recommended the evaluation of quality and safety of commercial antivenom by in vitro laboratory tests prior to their pre-clinical evaluation in animal model and therapeutic use. Therefore, in this study an attempt has been made to evaluate the quality of commercial polyvalent antivenom produced in India by simple, and affordable laboratory tests. Proteomic analysis revealed that PAVs contained 78.7-94.8% IgG/F(ab')2 and small quantities of plasma proteins. The PAVs showed batch-to-batch variations with varying amounts of undigested IgG and its aggregates, and moderate complement activation. However, absence of IgE, negligible endotoxin contamination, and recommended limit of preservative (cresol) in PAVs were observed. The PAVs contain varying proportions and least amount of venom-specific antibodies against venoms of the 'Big Four' snakes from different locales of India, and against eastern India N. kaouthia venom, respectively. The importance of independent in vitro laboratory tests for the quality control and safety assessment for improving the quality of Indian commercial PAV is reinforced.


Assuntos
Antivenenos/química , Animais , Venenos Elapídicos , Índia , Espectrometria de Massas , Proteômica , Mordeduras de Serpentes/tratamento farmacológico , Serpentes
5.
Acta Trop ; 216: 105833, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33485869

RESUMO

The sheer paucity of scientific documentation of herpetofauna in Vietnam and the rudimentary healthcare response to snakebite have stimulated this review. Over six decades of data culled from public data bases and search engines, have been used to assess snakebite burdens, clinical features of envenomation, and strategies for snakebite management in Vietnam. In addition, biochemical and proteomic analyses to decipher venom composition, rapid analytical techniques to be used for clinical diagnosis of snakebite in Vietnam have been discussed in detail. The assessment of efficacy, safety, and quality of commercial antivenom produced in Vietnam and improvement of antivenom production to meet the national requirement has been critically examined. It is apparent that snake bite incidence in Vietnam is exacerbated by mismatch in demand and supply of antivenom therapy, insufficient medical facilities, preference for traditional healers and poor management of clinical records. The impediments arising from geographical and species-specific variation in venom composition can be overcome by the 'Omics approach', and scientific documentation of pathophysiological manifestations post envenomation. The development of next generation of therapeutics, encouraging clinical research, novel approaches and social awareness against snakebite and its treatments have been suggested to significantly reduce the snakebite mortality and morbidity in this region.


Assuntos
Mordeduras de Serpentes/epidemiologia , Animais , Antivenenos/uso terapêutico , Efeitos Psicossociais da Doença , Humanos , Incidência , Mordeduras de Serpentes/complicações , Mordeduras de Serpentes/terapia , Vietnã/epidemiologia
6.
Toxicon ; 153: 120-127, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30189243

RESUMO

Snakebite causes a large amount of morbidities and mortalities in Africa. The safety, efficacy, and homogeneity of anti-snake venoms are crucial for snakebite treatments to be effective with minimal adverse effects. We assessed the homogeneity of preparations of three different batches of Combipack snake venom antiserums (Pan Africa) [CSVAPA] by quantitatively analysing F(ab')2, IgG, and other contaminating proteins of plasma. LC-MS/MS analysis showed that approximately 92.4% of the proteins from the CSVAPA samples was IgG/F(ab')2 and the percent composition of contaminating proteins in CSVAPA varied from 0.07 to 4.6%. Batch 1 of the CSVAPA also contained a minor amount of undigested IgG and F(ab')2 aggregates. CSVAPA contained more than 60% venom-specific antibodies, showed moderate complement activation, no IgE contamination, safe level of endotoxin, and also showed pre-clinical safety. The immuno cross-reactivity of CSVAPA against 14 Viperidae and Elapidae snake venoms of Africa was tested by ELISA and immunoblotting, and the neutralization of major enzymatic venom activities, demonstrating that high molecular weight (>50 kDa) venom proteins are better recognized/neutralized compared to relatively low molecular weight (<20 kDa) venom proteins. CSVAPA at a dose of 3-12 times higher than the clinical dose did not cause deaths or adverse reaction of treated rabbits. The results suggest the satisfactory quality, safety, and efficacy of CSVAPA.


Assuntos
Antivenenos/farmacologia , Venenos Elapídicos/antagonistas & inibidores , Venenos de Víboras/antagonistas & inibidores , África , Animais , Antivenenos/química , Antivenenos/toxicidade , Venenos Elapídicos/imunologia , Endotoxinas/análise , Feminino , Cavalos , Fragmentos Fab das Imunoglobulinas/análise , Imunoglobulina G/análise , Masculino , Testes de Neutralização , Coelhos , Venenos de Víboras/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA