Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 28(1): 182-200, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34553464

RESUMO

The ongoing development of the Global Carbon Project (GCP) global methane (CH4 ) budget shows a continuation of increasing CH4 emissions and CH4 accumulation in the atmosphere during 2000-2017. Here, we decompose the global budget into 19 regions (18 land and 1 oceanic) and five key source sectors to spatially attribute the observed global trends. A comparison of top-down (TD) (atmospheric and transport model-based) and bottom-up (BU) (inventory- and process model-based) CH4 emission estimates demonstrates robust temporal trends with CH4 emissions increasing in 16 of the 19 regions. Five regions-China, Southeast Asia, USA, South Asia, and Brazil-account for >40% of the global total emissions (their anthropogenic and natural sources together totaling >270 Tg CH4  yr-1 in 2008-2017). Two of these regions, China and South Asia, emit predominantly anthropogenic emissions (>75%) and together emit more than 25% of global anthropogenic emissions. China and the Middle East show the largest increases in total emission rates over the 2000 to 2017 period with regional emissions increasing by >20%. In contrast, Europe and Korea and Japan show a steady decline in CH4 emission rates, with total emissions decreasing by ~10% between 2000 and 2017. Coal mining, waste (predominantly solid waste disposal) and livestock (especially enteric fermentation) are dominant drivers of observed emissions increases while declines appear driven by a combination of waste and fossil emission reductions. As such, together these sectors present the greatest risks of further increasing the atmospheric CH4 burden and the greatest opportunities for greenhouse gas abatement.


Assuntos
Atmosfera , Metano , Animais , China , Gado , Metano/análise , Oceanos e Mares
2.
Natl Sci Rev ; 8(2): nwaa145, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34691569

RESUMO

Resolving regional carbon budgets is critical for informing land-based mitigation policy. For nine regions covering nearly the whole globe, we collected inventory estimates of carbon-stock changes complemented by satellite estimates of biomass changes where inventory data are missing. The net land-atmospheric carbon exchange (NEE) was calculated by taking the sum of the carbon-stock change and lateral carbon fluxes from crop and wood trade, and riverine-carbon export to the ocean. Summing up NEE from all regions, we obtained a global 'bottom-up' NEE for net land anthropogenic CO2 uptake of -2.2 ± 0.6 PgC yr-1 consistent with the independent top-down NEE from the global atmospheric carbon budget during 2000-2009. This estimate is so far the most comprehensive global bottom-up carbon budget accounting, which set up an important milestone for global carbon-cycle studies. By decomposing NEE into component fluxes, we found that global soil heterotrophic respiration amounts to a source of CO2 of 39 PgC yr-1 with an interquartile of 33-46 PgC yr-1-a much smaller portion of net primary productivity than previously reported.

3.
Sci Rep ; 10(1): 18688, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33122844

RESUMO

The COVID-19 pandemic caused drastic reductions in carbon dioxide (CO2) emissions, but due to its large atmospheric reservoir and long lifetime, no detectable signal has been observed in the atmospheric CO2 growth rate. Using the variabilities in CO2 (ΔCO2) and methane (ΔCH4) observed at Hateruma Island, Japan during 1997-2020, we show a traceable CO2 emission reduction in China during February-March 2020. The monitoring station at Hateruma Island observes the outflow of Chinese emissions during winter and spring. A systematic increase in the ΔCO2/ΔCH4 ratio, governed by synoptic wind variability, well corroborated the increase in China's fossil-fuel CO2 (FFCO2) emissions during 1997-2019. However, the ΔCO2/ΔCH4 ratios showed significant decreases of 29 ± 11 and 16 ± 11 mol mol-1 in February and March 2020, respectively, relative to the 2011-2019 average of 131 ± 11 mol mol-1. By projecting these observed ΔCO2/ΔCH4 ratios on transport model simulations, we estimated reductions of 32 ± 12% and 19 ± 15% in the FFCO2 emissions in China for February and March 2020, respectively, compared to the expected emissions. Our data are consistent with the abrupt decrease in the economic activity in February, a slight recovery in March, and return to normal in April, which was calculated based on the COVID-19 lockdowns and mobility restriction datasets.


Assuntos
Dióxido de Carbono/análise , Infecções por Coronavirus/epidemiologia , Combustíveis Fósseis/estatística & dados numéricos , Efeito Estufa/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Atmosfera/química , COVID-19 , China , Infecções por Coronavirus/economia , Humanos , Japão , Metano/análise , Pandemias/economia , Pneumonia Viral/economia
4.
Glob Chang Biol ; 26(3): 1068-1084, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31828914

RESUMO

Robust estimates of CO2 budget, CO2 exchanged between the atmosphere and terrestrial biosphere, are necessary to better understand the role of the terrestrial biosphere in mitigating anthropogenic CO2 emissions. Over the past decade, this field of research has advanced through understanding of the differences and similarities of two fundamentally different approaches: "top-down" atmospheric inversions and "bottom-up" biosphere models. Since the first studies were undertaken, these approaches have shown an increasing level of agreement, but disagreements in some regions still persist, in part because they do not estimate the same quantity of atmosphere-biosphere CO2 exchange. Here, we conducted a thorough comparison of CO2 budgets at multiple scales and from multiple methods to assess the current state of the science in estimating CO2 budgets. Our set of atmospheric inversions and biosphere models, which were adjusted for a consistent flux definition, showed a high level of agreement for global and hemispheric CO2 budgets in the 2000s. Regionally, improved agreement in CO2 budgets was notable for North America and Southeast Asia. However, large gaps between the two methods remained in East Asia and South America. In other regions, Europe, boreal Asia, Africa, South Asia, and Oceania, it was difficult to determine whether those regions act as a net sink or source because of the large spread in estimates from atmospheric inversions. These results highlight two research directions to improve the robustness of CO2 budgets: (a) to increase representation of processes in biosphere models that could contribute to fill the budget gaps, such as forest regrowth and forest degradation; and (b) to reduce sink-source compensation between regions (dipoles) in atmospheric inversion so that their estimates become more comparable. Advancements on both research areas will increase the level of agreement between the top-down and bottom-up approaches and yield more robust knowledge of regional CO2 budgets.


Assuntos
Dióxido de Carbono , Ecossistema , África , Ásia , Europa (Continente) , América do Norte , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA