Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34948948

RESUMO

The climate crisis threatens to exacerbate numerous climate-sensitive health risks, including heatwave mortality, malnutrition from reduced crop yields, water- and vector-borne infectious diseases, and respiratory illness from smog, ozone, allergenic pollen, and wildfires. Recent reports from the Intergovernmental Panel on Climate Change stress the urgent need for action to mitigate climate change, underscoring the need for more scientific assessment of the benefits of climate action for health and wellbeing. Project Drawdown has analyzed more than 80 solutions to address climate change, building on existing technologies and practices, that could be scaled to collectively limit warming to between 1.5° and 2 °C above preindustrial levels. The solutions span nine major sectors and are aggregated into three groups: reducing the sources of emissions, maintaining and enhancing carbon sinks, and addressing social inequities. Here we present an overview of how climate solutions in these three areas can benefit human health through improved air quality, increased physical activity, healthier diets, reduced risk of infectious disease, and improved sexual and reproductive health, and universal education. We find that the health benefits of a low-carbon society are more substantial and more numerous than previously realized and should be central to policies addressing climate change. Much of the existing literature focuses on health effects in high-income countries, however, and more research is needed on health and equity implications of climate solutions, especially in the Global South. We conclude that adding the myriad health benefits across multiple climate change solutions can likely add impetus to move climate policies faster and further.


Assuntos
Poluição do Ar , Ozônio , Poluição do Ar/análise , Mudança Climática , Humanos , Ozônio/análise
2.
Environ Epidemiol ; 5(3): e155, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34131616

RESUMO

Real-time monitoring of fine particulate matter (PM2.5) concentrations and assessing the health impact are limited in Ethiopia. The objective of this study is to describe current levels of PM2.5 air pollution in Addis Ababa and examine temporal patterns and to consider the health impact of current PM2.5 exposure levels. METHODS: PM2.5 concentrations were measured using a centrally-located Beta Attenuator Monitor (BAM-1022) for 3 years (1 April 2017 to 31 March 2020), with data downloaded biweekly. Deaths attributable to current PM2.5 concentration levels were estimated using the AirQ+ tool. The daily average was estimated using hourly data. RESULTS: The daily mean (SD) PM2.5 concentration was 42.4 µg/m3 (15.98). Two daily extremes were observed: morning (high) and afternoon (low). Sundays had the lowest PM2.5 concentration, while Mondays to Thursdays saw a continuous increase; Fridays showed the highest concentration. Seasons showed marked variation, with the highest values during the wet season. Concentration spikes reflected periods of intensive fuel combustion. A total of 502 deaths (4.44%) were attributable to current air pollution levels referenced to the 35 µg/m3 WHO interim target annual level and 2,043 (17.7%) at the WHO 10 µg/m3 annual guideline. CONCLUSION: PM2.5 daily levels were 1.7 times higher than the WHO-recommended 24-hour guideline. The current annual mean PM2.5 concentration results in a substantial burden of attributable deaths compared to an annual mean of 10 µg/m3. The high PM2.5 level and its variability across days and seasons calls for citywide interventions to promote clean air.

3.
Health Aff (Millwood) ; 39(12): 2182-2188, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33284692

RESUMO

A new generation of activists is calling for bold responses to the climate crisis. Although young people are motivated to act on climate issues, existing educational frameworks do not adequately prepare them by addressing the scope and complexity of the human health risks associated with climate change. We adapted the US government's climate literacy principles to propose a definition and corresponding set of elements for a concept we term climate and health literacy. We conducted a scoping review to assess how the peer-reviewed literature addresses these elements. Our analysis reveals a focus on training health professionals; more international than US domestic content; and limited information about data and models, fossil fuels, and equity. We propose developing a framework that builds on the elements to support a broader educational agenda that prepares students and future leaders to recognize the complex health ramifications of a changing climate.


Assuntos
Letramento em Saúde , Adolescente , Mudança Climática , Escolaridade , Pessoal de Saúde/educação , Humanos , Estudantes
5.
PLoS Med ; 15(7): e1002599, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29969461

RESUMO

BACKGROUND: Climate change negatively impacts human health through heat stress and exposure to worsened air pollution, amongst other pathways. Indoor use of air conditioning can be an effective strategy to reduce heat exposure. However, increased air conditioning use increases emissions of air pollutants from power plants, in turn worsening air quality and human health impacts. We used an interdisciplinary linked model system to quantify the impacts of heat-driven adaptation through building cooling demand on air-quality-related health outcomes in a representative mid-century climate scenario. METHODS AND FINDINGS: We used a modeling system that included downscaling historical and future climate data with the Weather Research and Forecasting (WRF) model, simulating building electricity demand using the Regional Building Energy Simulation System (RBESS), simulating power sector production and emissions using MyPower, simulating ambient air quality using the Community Multiscale Air Quality (CMAQ) model, and calculating the incidence of adverse health outcomes using the Environmental Benefits Mapping and Analysis Program (BenMAP). We performed simulations for a representative present-day climate scenario and 2 representative mid-century climate scenarios, with and without exacerbated power sector emissions from adaptation in building energy use. We find that by mid-century, climate change alone can increase fine particulate matter (PM2.5) concentrations by 58.6% (2.50 µg/m3) and ozone (O3) by 14.9% (8.06 parts per billion by volume [ppbv]) for the month of July. A larger change is found when comparing the present day to the combined impact of climate change and increased building energy use, where PM2.5 increases 61.1% (2.60 µg/m3) and O3 increases 15.9% (8.64 ppbv). Therefore, 3.8% of the total increase in PM2.5 and 6.7% of the total increase in O3 is attributable to adaptive behavior (extra air conditioning use). Health impacts assessment finds that for a mid-century climate change scenario (with adaptation), annual PM2.5-related adult mortality increases by 13,547 deaths (14 concentration-response functions with mean incidence range of 1,320 to 26,481, approximately US$126 billion cost) and annual O3-related adult mortality increases by 3,514 deaths (3 functions with mean incidence range of 2,175 to 4,920, approximately US$32.5 billion cost), calculated as a 3-month summer estimate based on July modeling. Air conditioning adaptation accounts for 654 (range of 87 to 1,245) of the PM2.5-related deaths (approximately US$6 billion cost, a 4.8% increase above climate change impacts alone) and 315 (range of 198 to 438) of the O3-related deaths (approximately US$3 billion cost, an 8.7% increase above climate change impacts alone). Limitations of this study include modeling only a single month, based on 1 model-year of future climate simulations. As a result, we do not project the future, but rather describe the potential damages from interactions arising between climate, energy use, and air quality. CONCLUSIONS: This study examines the contribution of future air-pollution-related health damages that are caused by the power sector through heat-driven air conditioning adaptation in buildings. Results show that without intervention, approximately 5%-9% of exacerbated air-pollution-related mortality will be due to increases in power sector emissions from heat-driven building electricity demand. This analysis highlights the need for cleaner energy sources, energy efficiency, and energy conservation to meet our growing dependence on building cooling systems and simultaneously mitigate climate change.


Assuntos
Ar Condicionado/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar , Exposição Ambiental/efeitos adversos , Arquitetura de Instituições de Saúde , Aquecimento Global , Material Particulado/efeitos adversos , Temperatura , Adulto , Idoso , Idoso de 80 Anos ou mais , Ar Condicionado/economia , Poluição do Ar/economia , Causas de Morte , Simulação por Computador , Monitoramento Ambiental/métodos , Arquitetura de Instituições de Saúde/economia , Feminino , Aquecimento Global/economia , Aquecimento Global/mortalidade , Nível de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Análise Numérica Assistida por Computador , Medição de Risco , Fatores de Risco , Fatores de Tempo , Estados Unidos
6.
Biomedica ; 35 Spec: 58-65, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26535742

RESUMO

INTRODUCTION: Environmental factors contribute with 16% of the burden of disease in Colombia. A main obstacle in implementing national and regional environmental and occupational health policies is the limited knowledge on the local ability to study and control the impact of harmful exposures on health. OBJECTIVE: To identify needs for research and training in environmental and occupational health in Colombia. MATERIALS AND METHODS: We conducted a three-round hybrid Delphi study. A group of environmental and occupational health Colombian experts (n=16) from government agencies, universities, and research centers was recruited to participate in the study. Expert´s opinions on research and training needs were gathered through online questionnaires, followed by an in-person meeting. The percentage of agreement and the coefficient of variation were used to measure consensus. RESULTS: Air pollution and chemical products were considered the most important environmental and occupational exposures, due to their significant impact on chronic non-communicable diseases, such as respiratory diseases, cardiovascular diseases, and cancer. Research on the effects of outdoor air pollution on cardiovascular and respiratory diseases was considered of the greatest importance. Priority training areas included environmental and occupational health risk assessment, exposure modeling, advanced statistical methods, urban planning, occupational safety and hygiene, and epidemiology and toxicology. CONCLUSIONS: These findings provide a valuable input for the definition and implementation of national environmental and occupational health policies and for the development of a regional hub aimed at strengthening the capacity for research and training in Colombia.


Assuntos
Técnica Delphi , Saúde Ambiental/educação , Saúde Ocupacional/educação , Pesquisa Biomédica , Colômbia , Humanos
7.
Biomédica (Bogotá) ; 35(spe): 58-65, ago. 2015. tab
Artigo em Inglês | LILACS | ID: lil-762718

RESUMO

Introduction: E nvironmental factors contribute with 16% of the burden of disease in Colombia. A main obstacle in implementing national and regional environmental and occupational health policies is the limited knowledge on the local ability to study and control the impact of harmful exposures on health. Objective: To identify needs for research and training in environmental and occupational health in Colombia. Materials and methods: We conducted a three-round hybrid Delphi study. A group of environmental and occupational health Colombian experts (n=16) from government agencies, universities, and research centers was recruited to participate in the study. Expert´s opinions on research and training needs were gathered through online questionnaires, followed by an in-person meeting. The percentage of agreement and the coefficient of variation were used to measure consensus. Results: Air pollution and chemical products were considered the most important environmental and occupational exposures, due to their significant impact on chronic non-communicable diseases, such as respiratory diseases, cardiovascular diseases, and cancer. Research on the effects of outdoor air pollution on cardiovascular and respiratory diseases was considered of the greatest importance. Priority training areas included environmental and occupational health risk assessment, exposure modeling, advanced statistical methods, urban planning, occupational safety and hygiene, and epidemiology and toxicology. Conclusions: These findings provide a valuable input for the definition and implementation of national environmental and occupational health policies and for the development of a regional hub aimed at strengthening the capacity for research and training in Colombia.


Introducción. Los factores ambientales contribuyen con el 16 % de la carga de enfermedad en Colombia. Un obstáculo importante para la implementación de políticas en salud ambiental y ocupacional es el conocimiento limitado sobre la capacidad local para estudiar y controlar el impacto de exposiciones ambientales y ocupacionales. Objetivo. Identificar necesidades de investigación y formación en salud ambiental y ocupacional en Colombia. Materiales y métodos. Se hizo un estudio Delphi híbrido en tres rondas. Se reclutó a un grupo de expertos en salud ambiental y ocupacional (n=16) de instituciones gubernamentales, universidades y centros de investigación. Las opiniones de los expertos sobre necesidades de investigación y formación se recolectaron mediante cuestionarios electrónicos, seguidos de una reunión presencial. El porcentaje de acuerdo y el coeficiente de variación se usaron para cuantificar el consenso del grupo. Resultados. La contaminación del aire y los productos químicos fueron considerados por los expertos como las exposiciones más importantes, dado su gran efecto en las enfermedades crónicas no transmisibles. La investigación de los efectos de la contaminación del aire ambiental sobre las enfermedades cardiovasculares y respiratorias, se consideró de importancia máxima. Las áreas prioritarias de formación fueron la evaluación del riesgo, el modelado de la exposición, los métodos estadísticos avanzados, la planeación urbana, la higiene y la seguridad industrial, y la epidemiología y la toxicología aplicadas a la salud ambiental y ocupacional. Conclusiones. Estos resultados son un insumo importante para la implementación de políticas nacionales en salud ambiental y ocupacional, y para el desarrollo de un nodo regional que fortalezca la capacidad de investigación y formación en Colombia.


Assuntos
Humanos , Técnica Delphi , Saúde Ambiental/educação , Saúde Ocupacional/educação , Pesquisa Biomédica , Colômbia
8.
Environ Health Perspect ; 120(1): 68-76, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22049372

RESUMO

BACKGROUND: Automobile exhaust contains precursors to ozone and fine particulate matter (PM ≤ 2.5 µm in aerodynamic diameter; PM2.5), posing health risks. Dependency on car commuting also reduces physical fitness opportunities. OBJECTIVE: In this study we sought to quantify benefits from reducing automobile usage for short urban and suburban trips. METHODS: We simulated census-tract level changes in hourly pollutant concentrations from the elimination of automobile round trips ≤ 8 km in 11 metropolitan areas in the upper midwestern United States using the Community Multiscale Air Quality (CMAQ) model. Next, we estimated annual changes in health outcomes and monetary costs expected from pollution changes using the U.S. Environmental Protection Agency Benefits Mapping Analysis Program (BenMAP). In addition, we used the World Health Organization Health Economic Assessment Tool (HEAT) to calculate benefits of increased physical activity if 50% of short trips were made by bicycle. RESULTS: We estimate that, by eliminating these short automobile trips, annual average urban PM2.5 would decline by 0.1 µg/m3 and that summer ozone (O3) would increase slightly in cities but decline regionally, resulting in net health benefits of $4.94 billion/year [95% confidence interval (CI): $0.2 billion, $13.5 billion), with 25% of PM2.5 and most O3 benefits to populations outside metropolitan areas. Across the study region of approximately 31.3 million people and 37,000 total square miles, mortality would decline by approximately 1,295 deaths/year (95% CI: 912, 1,636) because of improved air quality and increased exercise. Making 50% of short trips by bicycle would yield savings of approximately $3.8 billion/year from avoided mortality and reduced health care costs (95% CI: $2.7 billion, $5.0 billion]. We estimate that the combined benefits of improved air quality and physical fitness would exceed $8 billion/year. CONCLUSION: Our findings suggest that significant health and economic benefits are possible if bicycling replaces short car trips. Less dependence on automobiles in urban areas would also improve health in downwind rural settings.


Assuntos
Poluição do Ar/análise , Condução de Veículo , Ciclismo , Exercício Físico , Emissões de Veículos/análise , Simulação por Computador , Saúde Ambiental , Humanos , Meio-Oeste dos Estados Unidos , Ozônio/análise , Material Particulado/análise
9.
Annu Rev Public Health ; 29: 27-39, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18173382

RESUMO

Climate change is projected to have adverse impacts on public health. Cobenefits may be possible from more upstream mitigation of greenhouse gases causing climate change. To help measure such cobenefits alongside averted disease-specific risks, a health impact assessment (HIA) framework can more comprehensively serve as a decision support tool. HIA also considers health equity, clearly part of the climate change problem. New choices for energy must be made carefully considering such effects as additional pressure on the world's forests through large-scale expansion of soybean and oil palm plantations, leading to forest clearing, biodiversity loss and disease emergence, expulsion of subsistence farmers, and potential increases in food prices and emissions of carbon dioxide to the atmosphere. Investigators must consider the full range of policy options, supported by more comprehensive, flexible, and transparent assessment methods.


Assuntos
Efeito Estufa , Saúde Pública , Política Pública , Poluição do Ar/efeitos adversos , Poluição do Ar/prevenção & controle , Conservação de Recursos Energéticos , Países Desenvolvidos , Países em Desenvolvimento , Ecossistema , Combustíveis Fósseis/efeitos adversos , Combustíveis Fósseis/normas , Combustíveis Fósseis/estatística & dados numéricos , Saúde Global , Disparidades nos Níveis de Saúde , Humanos , Cooperação Internacional , Medição de Risco
10.
J Environ Monit ; 7(9): 834-43, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16121261

RESUMO

This paper reviews the background that has led to the now almost-universally held opinion in the scientific community that global climate change is occurring and is inescapably linked with anthropogenic activity. The potential implications to human health are considerable and very diverse. These include, for example, the increased direct impacts of heat and of rises in sea level, exacerbated air and water-borne harmful agents, and--associated with all the preceding--the emergence of environmental refugees. Vector-borne diseases, in particular those associated with blood-sucking arthropods such as mosquitoes, may be significantly impacted, including redistribution of some of those diseases to areas not previously affected. Responses to possible impending environmental and public health crises must involve political and socio-economic considerations, adding even greater complexity to what is already a difficult challenge. In some areas, adjustments to national and international public health practices and policies may be effective, at least in the short and medium terms. But in others, more drastic measures will be required. Environmental monitoring, in its widest sense, will play a significant role in the future management of the problem.


Assuntos
Clima , Monitoramento Ambiental , Poluição Ambiental/efeitos adversos , Saúde Global , Política de Saúde , Humanos , Medição de Risco
11.
Environ Health Perspect ; 112(10): 1092-8, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15238283

RESUMO

Anthropogenic land use changes drive a range of infectious disease outbreaks and emergence events and modify the transmission of endemic infections. These drivers include agricultural encroachment, deforestation, road construction, dam building, irrigation, wetland modification, mining, the concentration or expansion of urban environments, coastal zone degradation, and other activities. These changes in turn cause a cascade of factors that exacerbate infectious disease emergence, such as forest fragmentation, disease introduction, pollution, poverty, and human migration. The Working Group on Land Use Change and Disease Emergence grew out of a special colloquium that convened international experts in infectious diseases, ecology, and environmental health to assess the current state of knowledge and to develop recommendations for addressing these environmental health challenges. The group established a systems model approach and priority lists of infectious diseases affected by ecologic degradation. Policy-relevant levels of the model include specific health risk factors, landscape or habitat change, and institutional (economic and behavioral) levels. The group recommended creating Centers of Excellence in Ecology and Health Research and Training, based at regional universities and/or research institutes with close links to the surrounding communities. The centers' objectives would be 3-fold: a) to provide information to local communities about the links between environmental change and public health; b) to facilitate fully interdisciplinary research from a variety of natural, social, and health sciences and train professionals who can conduct interdisciplinary research; and c) to engage in science-based communication and assessment for policy making toward sustainable health and ecosystems.


Assuntos
Doenças Transmissíveis , Surtos de Doenças , Meio Ambiente , Saúde Pública , Agricultura , Cidades , Poluentes Ambientais , Agricultura Florestal , Humanos , Mineração , Formulação de Políticas , Fatores de Risco , Condições Sociais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA