Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
PLoS Pathog ; 3(10): 1401-13, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17953480

RESUMO

Babesia bovis is an apicomplexan tick-transmitted pathogen of cattle imposing a global risk and severe constraints to livestock health and economic development. The complete genome sequence was undertaken to facilitate vaccine antigen discovery, and to allow for comparative analysis with the related apicomplexan hemoprotozoa Theileria parva and Plasmodium falciparum. At 8.2 Mbp, the B. bovis genome is similar in size to that of Theileria spp. Structural features of the B. bovis and T. parva genomes are remarkably similar, and extensive synteny is present despite several chromosomal rearrangements. In contrast, B. bovis and P. falciparum, which have similar clinical and pathological features, have major differences in genome size, chromosome number, and gene complement. Chromosomal synteny with P. falciparum is limited to microregions. The B. bovis genome sequence has allowed wide scale analyses of the polymorphic variant erythrocyte surface antigen protein (ves1 gene) family that, similar to the P. falciparum var genes, is postulated to play a role in cytoadhesion, sequestration, and immune evasion. The approximately 150 ves1 genes are found in clusters that are distributed throughout each chromosome, with an increased concentration adjacent to a physical gap on chromosome 1 that contains multiple ves1-like sequences. ves1 clusters are frequently linked to a novel family of variant genes termed smorfs that may themselves contribute to immune evasion, may play a role in variant erythrocyte surface antigen protein biology, or both. Initial expression analysis of ves1 and smorf genes indicates coincident transcription of multiple variants. B. bovis displays a limited metabolic potential, with numerous missing pathways, including two pathways previously described for the P. falciparum apicoplast. This reduced metabolic potential is reflected in the B. bovis apicoplast, which appears to have fewer nuclear genes targeted to it than other apicoplast containing organisms. Finally, comparative analyses have identified several novel vaccine candidates including a positional homolog of p67 and SPAG-1, Theileria sporozoite antigens targeted for vaccine development. The genome sequence provides a greater understanding of B. bovis metabolism and potential avenues for drug therapies and vaccine development.


Assuntos
Babesia bovis/genética , DNA de Protozoário/análise , Genes de Protozoários , Plasmodium falciparum/genética , Theileria parva/genética , Animais , Antígenos de Protozoários/imunologia , Babesia bovis/imunologia , Babesia bovis/metabolismo , Babesiose/parasitologia , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Cromossomos , DNA Complementar/análise , Evolução Molecular , Biblioteca Genômica , Dados de Sequência Molecular , Plasmodium falciparum/imunologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Análise de Sequência de DNA , Especificidade da Espécie , Sintenia , Theileria parva/imunologia , Theileria parva/metabolismo
2.
BMC Biol ; 4: 29, 2006 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-16930487

RESUMO

BACKGROUND: Protein translocation to the proper cellular destination may be guided by various classes of sorting signals recognizable in the primary sequence. Detection in some genomes, but not others, may reveal sorting system components by comparison of the phylogenetic profile of the class of sorting signal to that of various protein families. RESULTS: We describe a short C-terminal homology domain, sporadically distributed in bacteria, with several key characteristics of protein sorting signals. The domain includes a near-invariant motif Pro-Glu-Pro (PEP). This possible recognition or processing site is followed by a predicted transmembrane helix and a cluster rich in basic amino acids. We designate this domain PEP-CTERM. It tends to occur multiple times in a genome if it occurs at all, with a median count of eight instances; Verrucomicrobium spinosum has sixty-five. PEP-CTERM-containing proteins generally contain an N-terminal signal peptide and exhibit high diversity and little homology to known proteins. All bacteria with PEP-CTERM have both an outer membrane and exopolysaccharide (EPS) production genes. By a simple heuristic for screening phylogenetic profiles in the absence of pre-formed protein families, we discovered that a homolog of the membrane protein EpsH (exopolysaccharide locus protein H) occurs in a species when PEP-CTERM domains are found. The EpsH family contains invariant residues consistent with a transpeptidase function. Most PEP-CTERM proteins are encoded by single-gene operons preceded by large intergenic regions. In the Proteobacteria, most of these upstream regions share a DNA sequence, a probable cis-regulatory site that contains a sigma-54 binding motif. The phylogenetic profile for this DNA sequence exactly matches that of three proteins: a sigma-54-interacting response regulator (PrsR), a transmembrane histidine kinase (PrsK), and a TPR protein (PrsT). CONCLUSION: These findings are consistent with the hypothesis that PEP-CTERM and EpsH form a protein export sorting system, analogous to the LPXTG/sortase system of Gram-positive bacteria, and correlated to EPS expression. It occurs preferentially in bacteria from sediments, soils, and biofilms. The novel method that led to these findings, partial phylogenetic profiling, requires neither global sequence clustering nor arbitrary similarity cutoffs and appears to be a rapid, effective alternative to other profiling methods.


Assuntos
Motivos de Aminoácidos/genética , Proteínas de Bactérias/metabolismo , Polissacarídeos Bacterianos/metabolismo , Sinais Direcionadores de Proteínas/genética , Sequência de Aminoácidos , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Proteínas de Bactérias/genética , Biofilmes , Genoma Bacteriano/genética , Cadeias de Markov , Dados de Sequência Molecular , Filogenia , Sinais Direcionadores de Proteínas/fisiologia , Transporte Proteico/fisiologia , Água do Mar/microbiologia , Alinhamento de Sequência , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA