Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Biol Chem ; 79: 55-62, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30716601

RESUMO

Rho kinases, one of the best-known members of the serine/threonine (Ser/Thr) protein kinase family, can be used as target enzymes for the treatment of many diseases such as cancer or multiple sclerosis, and especially for the treatment of cardiovascular diseases. This study presents QSAR modeling for a series of 41 chemical compounds as Rho kinase inhibitors based on the Monte Carlo method. QSAR models were developed for three random splits into the training and test set. Molecular descriptors used for QSAR modeling were based on the SMILES notation and local invariants of the molecular graph. The statistical quality of the developed model, including robustness and predictability, was tested with different statistical approaches and satisfying results were obtained. The best calculated QSAR model had the following statistical parameters: r2 = 0.8825 and q2 = 0.8626 for the training set and r2 = 0.9377 and q2 = 0.9124 for the test set. Novel statistical metric entitled as the index of ideality of correlation was used for the final model assessment, and the obtained results were 0.6631 for the training and 0.9683 for the test set. Molecular fragments responsible for the increases and decreases of the studied activity were defined and they were further used for the computer-aided design of new compounds as potential Rho kinase inhibitors. The final assessment of the developed QSAR model and designed inhibitors was achieved with the application of molecular docking. An excellent correlation between the results from QSAR and molecular docking studies was obtained.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Simulação por Computador , Desenho Assistido por Computador , Inibidores de Proteínas Quinases/farmacologia , Ureia/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Doenças Cardiovasculares/metabolismo , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Método de Monte Carlo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Quantitativa Estrutura-Atividade , Ureia/análogos & derivados , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA