Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(6): 9408-9420, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191727

RESUMO

Rio Grande is a city located on a narrow industrialized and urbanized Brazilian peninsula, characterized by wetlands. Due to population growth, numerous urban backfilled regions were built to expand the territorial area of the city. Currently, more than 60% of the central area of the city comes from the grounding of wetlands. The material used for the expansion of the territory had a history of contamination from metals from the tannery and textile industries (mainly Hg) and urban solid waste. In addition to past sources, the city has an active industrial complex with fertilizer, petrochemical, and grain industries. This study evaluated the risks to human health caused by metals (Hg, Fe, Ni, Cr, Cu, Pb, and Zn) in original soils and backfills, considering the oral, inhalation, and dermal routes of exposure for children and adults using the tool human health risk assessment (HHRA) proposed methodology by USEPA. A total of 63.81% of the original soil samples and 57.14% of the backfill soil samples showed a non-carcinogenic risk (HInc>1) for at least one evaluated metal. Still, approximately 10% of the samples presented carcinogenic risk when the Cr was considered in the hexavalent form. The dermal (Hg, Ni, and Cr) and oral (Fe, Cu, and Zn) exposure routes had the greatest contribution to the total risk. The non-carcinogenic risk for Hg, Cr(VI), and Pb was heterogeneously distributed between the original soils and backfills and associated with the proximity to some pollution sources. Given the complexity of historical occupation in the municipality and the increasing industrialization, both the original areas and the backfills should be included in the risk management strategy to minimize risks.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Criança , Adulto , Humanos , Metais Pesados/análise , Monitoramento Ambiental/métodos , Brasil , Chumbo , Medição de Risco , Carcinógenos/análise , Solo/química , Poluentes do Solo/análise , China
2.
Nutrients ; 15(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37630733

RESUMO

Protein supplements (PS) are trendy foods, especially those made from whey. In addition to providing protein, these products are a source of metals, providing essential elements (Na, K, Mg, Ca, Mo, Mn, Fe, Co, Cu, and Zn) and other potentially toxic elements (Al, B, Sr, V Ba, and Ni). In this study, 47 whey PS samples were analyzed for mineral elements by ICP-OES, and their dietary exposures were assessed for three consumption scenarios. Elements found in higher concentrations were K (4689.10 mg/kg) and Ca (3811.27 mg/kg). The intake of 30 g PS (average recommended amount/day) provides about 20% of the established reference value (NRI) for Cr (18.30% for men and 25.63% for women) and Mo (26.99%). In a high daily consumption scenario (100 g PS/day) and when the maximum concentrations are considered, Cr, Zn, Fe, Mo, and Mg dietary intakes of these metals exceed the daily recommended intakes and could pose a risk. The daily intake of 30, 60, and 100 g of whey PS for 25 years does not pose a health risk since the hazard index (HI) is less than one in these consumption scenarios, and the essential elements contributing most to HI are Co, followed by Mo and Cr. It is recommended to improve the information to the consumers of these new products. Furthermore, to help in the management and prevention of these potential health risks, it would be advisable to improve the regulation of these dietary supplements and their labeling.


Assuntos
Metais , Soro do Leite , Masculino , Feminino , Humanos , Proteínas do Soro do Leite , Exposição Dietética , Suplementos Nutricionais
3.
Foods ; 12(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37048259

RESUMO

Bioaccumulation is the process by which living organisms accumulate substances, such as pesticides, heavy metals, and other pollutants, from their environment. These substances can accumulate in the organism's tissues over time, leading to potential health risks. Bioaccumulation can occur in both aquatic and terrestrial ecosystems, and can have a significant impact on the health of both humans and wildlife. The objective of this study is to find out if the concentrations of metals in the tuna species of the Canary Islands are suitable for human consumption and if they pose a health risk. Fifteen samples of Acanthocybium solandri, Katsuwonus pelamis, Thunnus albacares, Thunnus obesus and Thunnus thynnus present in canaries were analyzed. Ten grams of muscle were taken from each specimen and the metals Al, Cd, Cr, Cu, Fe, Li, Ni, Pb and Zn were determined by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The tuna species that presented more metals with a higher concentration compared to the others was T. thynnus, reaching up to 100 times more than the other studied species in Fe content with 137.8 ± 100.9 mg/Kg, which may be due to the fact that it is the largest species that reaches ages of more than fifteen years. The species Thunnus thynnus should not be suitable for commercialization according to the current legislation on the concentrations of Cd in blue fish, since 75% of the specimens studied exceeded the concentration legislated for Cd. A total of 40% of the studied specimens of this this species exceeded the legislated values for the concentration of Pb in oily fish meat, so this species must be monitored to ensure that it does not pose a risk to human health.

4.
Environ Geochem Health ; 45(2): 305-318, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35347513

RESUMO

Energy generated by coal can contaminate the environment by releasing toxic elements, including metals. The human health risk assessment (HHRA) associated with geographic information system (GIS) tools can assist the management of contaminated areas, such as coal mining areas. The objective of the study was to carry out the assessment and spatialization of the risk to human health of potentially hazards elements (PHEs) in the soil for children and adults, from multiple exposure routes (oral, inhalation and dermal) in the Candiota mines, largest coal mining region of Brazil. The non-carcinogenic risks (HQ) of PHEs (Cu, Pb, Zn, Ni, Cr, Fe, Mn, Cd, As and Se) and carcinogenic risks of As were estimated and spatialized. The results revealed a risk for children exposure to Mn, with greatest contribution through dermal route. Mn (HQderm 72.41-96.09% and HQinh 40.84-82.52%) and Fe (HQo 43.90-81.44%) were the metals with greatest contribution to human health risk among studied population. As did not present carinogenic risk to adults. The spatial distribution of non-carcinogenic risk showed that Cr, As, Fe, Pb, Ni, Zn and Cu have higher HInc close to the coal mining areas, while Mn, Se and Cd have the highest HInc values in surrounding municipalities (Pinheiro Machado; Pedras Altas and Hulha Negra). The use of HHRA associated with GIS tools provides important elements for decision-making in the management of contaminated sites, indicating chemical elements, locations, routes of exposure and priority target populations.


Assuntos
Minas de Carvão , Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Metais Pesados/toxicidade , Metais Pesados/análise , Cádmio , Monitoramento Ambiental/métodos , Carvão Mineral , Brasil , Chumbo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Solo , Medição de Risco
5.
Foods ; 11(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36496618

RESUMO

Instant soups and noodles are one of the most widely consumed commercial food products. These products are made from ingredients of animal (chicken, meat) and/or vegetable origin, in addition to various food additives that prolong the shelf life of the product. It should be noted that instant soups are a dehydrated product, whose water-removal process can increase the accumulation of contaminants, such as toxic metals (Al, Cd, or Pb), that are harmful to the health of consumers. The content of toxic metals (Al, Cd, and Pb) in a total of 130 samples of instant soups of different types (poultry, meat, and vegetables) was determined by ICP-OES (inductively coupled plasma-optical emission spectrometry). The Al content (32.28 ± 19.26), the Cd content (0.027 ± 0.016), and the Pb content (0.12 ± 0.13) in the vegetable soups were worth mentioning. Considering an intake of twenty grams (recommended by the manufacturer), the dietary intake of Al (19.56% of the TWI set at 1 mg/kg bw/week), the intake of Cd (6.59% of the TWI set at 2.5 µg/kg bw/week), and the Pb intake (16.18% of the BMDL set for nephrotoxic effects at 0.63 µg/kg bw/week and 6.84% of the BMDL set for cardiovascular effects at 1.50 µg/kg bw/week) in the population aged 3-10 years, instant soups are not recommended for the population aged 3-10 years, while their consumption does not pose a health risk for adults. However, it is necessary to consider the cooking water used in the preparation of these products, as it may increase exposure to these toxic metals, in addition to the rest of the diet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA