Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Circulation ; 148(9): 778-797, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37427428

RESUMO

BACKGROUND: Cardiac fibroblasts have crucial roles in the heart. In particular, fibroblasts differentiate into myofibroblasts in the damaged myocardium, contributing to scar formation and interstitial fibrosis. Fibrosis is associated with heart dysfunction and failure. Myofibroblasts therefore represent attractive therapeutic targets. However, the lack of myofibroblast-specific markers has precluded the development of targeted therapies. In this context, most of the noncoding genome is transcribed into long noncoding RNAs (lncRNAs). A number of lncRNAs have pivotal functions in the cardiovascular system. lncRNAs are globally more cell-specific than protein-coding genes, supporting their importance as key determinants of cell identity. METHODS: In this study, we evaluated the value of the lncRNA transcriptome in very deep single-cell RNA sequencing. We profiled the lncRNA transcriptome in cardiac nonmyocyte cells after infarction and probed heterogeneity in the fibroblast and myofibroblast populations. In addition, we searched for subpopulation-specific markers that can constitute novel targets in therapy for heart disease. RESULTS: We demonstrated that cardiac cell identity can be defined by the sole expression of lncRNAs in single-cell experiments. In this analysis, we identified lncRNAs enriched in relevant myofibroblast subpopulations. Selecting 1 candidate we named FIXER (fibrogenic LOX-locus enhancer RNA), we showed that its silencing limits fibrosis and improves heart function after infarction. Mechanitically, FIXER interacts with CBX4, an E3 SUMO protein ligase and transcription factor, guiding CBX4 to the promoter of the transcription factor RUNX1 to control its expression and, consequently, the expression of a fibrogenic gene program.. FIXER is conserved in humans, supporting its translational value. CONCLUSIONS: Our results demonstrated that lncRNA expression is sufficient to identify the various cell types composing the mammalian heart. Focusing on cardiac fibroblasts and their derivatives, we identified lncRNAs uniquely expressed in myofibroblasts. In particular, the lncRNA FIXER represents a novel therapeutic target for cardiac fibrosis.


Assuntos
Cardiomiopatias , RNA Longo não Codificante , Animais , Humanos , Transcriptoma , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cardiomiopatias/genética , Fibrose , Análise de Sequência de RNA , Fatores de Transcrição/genética , Infarto , Mamíferos/genética , Mamíferos/metabolismo , Ligases/genética , Ligases/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo
2.
Noncoding RNA ; 6(2)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443579

RESUMO

The EU-CardioRNA Cooperation in Science and Technology (COST) Action is a European-wide consortium established in 2018 with 31 European country members and four associate member countries to build bridges between translational researchers from academia and industry who conduct research on non-coding RNAs, cardiovascular diseases and similar research areas. EU-CardioRNA comprises four core working groups (WG1-4). In the first year since its launch, EU-CardioRNA met biannually to exchange and discuss recent findings in related fields of scientific research, with scientific sessions broadly divided up according to WG. These meetings are also an opportunity to establish interdisciplinary discussion groups, brainstorm ideas and make plans to apply for joint research grants and conduct other scientific activities, including knowledge transfer. Following its launch in Brussels in 2018, three WG meetings have taken place. The first of these in Lisbon, Portugal, the second in Istanbul, Turkey, and the most recent in Maastricht, The Netherlands. Each meeting includes a scientific session from each WG. This meeting report briefly describes the highlights and key take-home messages from each WG session in this first successful year of the EU-CardioRNA COST Action.

3.
Noncoding RNA ; 5(2)2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934986

RESUMO

Cardiovascular disease (CVD) remains the leading cause of death worldwide and, despite continuous advances, better diagnostic and prognostic tools, as well as therapy, are needed. The human transcriptome, which is the set of all RNA produced in a cell, is much more complex than previously thought and the lack of dialogue between researchers and industrials and consensus on guidelines to generate data make it harder to compare and reproduce results. This European Cooperation in Science and Technology (COST) Action aims to accelerate the understanding of transcriptomics in CVD and further the translation of experimental data into usable applications to improve personalized medicine in this field by creating an interdisciplinary network. It aims to provide opportunities for collaboration between stakeholders from complementary backgrounds, allowing the functions of different RNAs and their interactions to be more rapidly deciphered in the cardiovascular context for translation into the clinic, thus fostering personalized medicine and meeting a current public health challenge. Thus, this Action will advance studies on cardiovascular transcriptomics, generate innovative projects, and consolidate the leadership of European research groups in the field.COST (European Cooperation in Science and Technology) is a funding organization for research and innovation networks (www.cost.eu).

4.
Genes Dev ; 26(3): 259-70, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22302938

RESUMO

Dietary obesity is a major factor in the development of type 2 diabetes and is associated with intra-adipose tissue hypoxia and activation of hypoxia-inducible factor 1α (HIF1α). Here we report that, in mice, Hif1α activation in visceral white adipocytes is critical to maintain dietary obesity and associated pathologies, including glucose intolerance, insulin resistance, and cardiomyopathy. This function of Hif1α is linked to its capacity to suppress ß-oxidation, in part, through transcriptional repression of sirtuin 2 (Sirt2) NAD(+)-dependent deacetylase. Reduced Sirt2 function directly translates into diminished deacetylation of PPARγ coactivator 1α (Pgc1α) and expression of ß-oxidation and mitochondrial genes. Importantly, visceral adipose tissue from human obese subjects is characterized by high levels of HIF1α and low levels of SIRT2. Thus, by negatively regulating the Sirt2-Pgc1α regulatory axis, Hif1α negates adipocyte-intrinsic pathways of fatty acid catabolism, thereby creating a metabolic state supporting the development of obesity.


Assuntos
Adipócitos/metabolismo , Metabolismo Energético , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , NAD/metabolismo , Obesidade/patologia , Sirtuína 2/metabolismo , Acetilação , Adipócitos/citologia , Animais , Sequência de Bases , Diferenciação Celular , Células Cultivadas , Dieta , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Alinhamento de Sequência , Sirtuína 2/genética , Transativadores/metabolismo , Fatores de Transcrição
5.
Neuropeptides ; 38(4): 267-75, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15337379

RESUMO

The peptidic neurotransmitter neuropeptide Y (NPY) has been functionally implicated in feeding behavior, cardiovascular regulation, control of neuroendocrine axes, affective disorders, seizures, and memory retention. At least five different receptors mediate NPY actions. In particular, the Y1 receptor appears to be involved in a variety of NPY-induced pathways. This review summarizes the main findings resulting from the use of mice lacking NPY Y1 receptor expression. Interestingly, the overall phenotype of Y1 knockouts mimics metabolic syndrome, which is characterized by obesity, a prediabetic state, and a susceptibility to develop hypertension.


Assuntos
Camundongos Knockout , Receptores de Neuropeptídeo Y/metabolismo , Transdução de Sinais/fisiologia , Animais , Pressão Sanguínea/fisiologia , Metabolismo Energético , Homeostase , Sistema Hipotálamo-Hipofisário/fisiologia , Camundongos , Obesidade/metabolismo , Receptores de Neuropeptídeo Y/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA