Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
medRxiv ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38318206

RESUMO

Introduction: Active and passive surveillance studies have found that a greater proportion of females report adverse events (AE) following receipt of either the COVID-19 or seasonal influenza vaccine compared to males. We sought to determine the intersection of biological sex and sociocultural gender differences in prospective active reporting of vaccine outcomes, which remains poorly characterized. Methods: This cohort study enrolled Johns Hopkins Health System healthcare workers (HCWs) who were recruited from the annual fall 2019-2022 influenza vaccine and the fall 2022 COVID-19 bivalent vaccine campaigns. Vaccine recipients were enrolled the day of vaccination and AE surveys were administered two days post-vaccination (DPV) for bivalent COVID-19 and Influenza vaccine recipients. Data were collected regarding the presence of a series of solicited local and systemic AEs. Open-ended answers about participants' experiences with AEs also were collected for the COVID-19 vaccine recipients. Results: Females were more likely to report local AEs after influenza (OR=2.28, p=0.001) or COVID-19 (OR=2.57, p=0.008) vaccination compared to males, regardless of age or race. Males and females had comparable probabilities of reporting systemic AEs after influenza (OR=1.18, p=0.552) or COVID-19 (OR=0.96, p=0.907) vaccination. Exogenous hormones from birth control use did not impact the rates of reported AEs following COVID-19 vaccination among reproductive-aged female HCWs. Women reported more interruptions in their daily routine following COVID-19 vaccination than men and were more likely to seek out self-treatment. More women than men scheduled their COVID-19 vaccination before their days off in anticipation of AEs. Conclusions: Our findings highlight the need for sex- and gender-inclusive policies to inform more effective occupational health vaccination strategies. Further research is needed to evaluate the potential disruption of AEs on occupational responsibilities following mandated vaccination for healthcare workers and to more fully characterize the post-vaccination behavioral differences between men and women. KEY MESSAGE: What is already known on this topic: ⇒ Among diversely aged adults 18-64 years, females report more AEs to vaccines, including the influenza and COVID-19 vaccines, than males.⇒ Vaccine AEs play a role in shaping vaccine hesitancy and uptake.⇒ Vaccine uptake related to influenza and COVID-19 are higher among men than women.⇒ Research that addresses both the sex and gender disparities of vaccine outcomes and behaviors is lacking.What this study adds: ⇒ This prospective active reporting study uses both quantitative and qualitative survey data to examine sex and gender differences in AEs following influenza or COVID-19 vaccination among a cohort of reproductive-aged healthcare workers.How this study might affect research, practice, or policy: ⇒ Sex and gender differences in AEs and perceptions relating to vaccination should drive the development of more equitable and effective vaccine strategies and policies in occupational health settings.

2.
Microbiol Spectr ; 10(6): e0178122, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36318009

RESUMO

The first pandemic of the 21st century was caused by an H1N1 influenza A virus (IAV) introduced from pigs into humans, highlighting the importance of swine as reservoirs for pandemic viruses. Two major lineages of swine H1 circulate in North America: the 1A classical swine lineage (including that of the 2009 H1N1 pandemic) and the 1B human seasonal-like lineage. Here, we investigated the evolution of these H1 IAV lineages in North American swine and their potential pandemic risk. We assessed the antigenic distance between the HA of representative swine H1 and human seasonal vaccine strains (1978 to 2015) in hemagglutination inhibition (HI) assays using a panel of monovalent antisera raised in pigs. Antigenic cross-reactivity varied by strain but was associated with genetic distance. Generally, the swine 1A lineage viruses that seeded the 2009 H1 pandemic were antigenically most similar to the H1 pandemic vaccine strains, with the exception of viruses in the genetic clade 1A.1.1.3, which had a two-amino acid deletion mutation near the receptor-binding site, which dramatically reduced antibody recognition. The swine 1B lineage strains, which arose from previously circulating (pre-2009 pandemic) human seasonal viruses, were more antigenically similar to pre-2009 human seasonal H1 vaccine viruses than post-2009 strains. Human population immunity was measured by cross-reactivity in HI assays to representative swine H1 strains. There was a broad range of titers against each swine strain that was not associated with age, sex, or location. However, there was almost no cross-reactivity in human sera to the 1A.1.1.3 and 1B.2.1 genetic clades of swine viruses, and the 1A.1.1.3 and 1B.2.1 clades were also the most antigenically distant to the human vaccine strains. Our data demonstrate that the antigenic distances of representative swine strains from human vaccine strains represent an important part of the rational assessment of swine IAV for zoonotic risk research and pandemic preparedness prioritization. IMPORTANCE Human H1 influenza A viruses (IAV) spread to pigs in North America, resulting in a sustained circulation of two major groups of H1 viruses in swine. We quantified the genetic diversity of H1 in swine and measured antigenic phenotypes. We demonstrated that the swine H1 lineages were significantly different from the human vaccine strains and that this antigenic dissimilarity increased over time as the viruses evolved in swine. Pandemic preparedness vaccine strains for human vaccines also demonstrated a loss in similarity with contemporary swine strains. Human sera revealed a range of responses to swine IAV, including two groups of viruses with little to no immunity. The surveillance and risk assessment of IAV diversity in pig populations are essential to detect strains with reduced immunity in humans and provide critical information for pandemic preparedness.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Infecções por Orthomyxoviridae , Doenças dos Suínos , Suínos , Animais , Antígenos Virais/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H1N1/genética , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Suínos/virologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia
3.
J Infect Dis ; 224(6): 976-982, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34191025

RESUMO

BACKGROUND: Serial screening is critical for restricting spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by facilitating timely identification of infected individuals to interrupt transmission. Variation in sensitivity of different diagnostic tests at different stages of infection has not been well documented. METHODS: In a longitudinal study of 43 adults newly infected with SARS-CoV-2, all provided daily saliva and nasal swabs for quantitative reverse transcription polymerase chain reaction (RT-qPCR), Quidel SARS Sofia antigen fluorescent immunoassay (FIA), and live virus culture. RESULTS: Both RT-qPCR and Quidel SARS Sofia antigen FIA peaked in sensitivity during the period in which live virus was detected in nasal swabs, but sensitivity of RT-qPCR tests rose more rapidly prior to this period. We also found that serial testing multiple times per week increases the sensitivity of antigen tests. CONCLUSIONS: RT-qPCR tests are more effective than antigen tests at identifying infected individuals prior to or early during the infectious period and thus for minimizing forward transmission (given timely results reporting). All tests showed >98% sensitivity for identifying infected individuals if used at least every 3 days. Daily screening using antigen tests can achieve approximately 90% sensitivity for identifying infected individuals while they are viral culture positive.


Assuntos
Teste para COVID-19 , COVID-19/diagnóstico , Testes Diagnósticos de Rotina , SARS-CoV-2/isolamento & purificação , Adulto , Idoso , Animais , Antígenos Virais/análise , Chlorocebus aethiops , Feminino , Humanos , Estudos Longitudinais , Masculino , Programas de Rastreamento , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Saliva , Sensibilidade e Especificidade , Células Vero , Adulto Jovem
4.
medRxiv ; 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33791719

RESUMO

WHAT IS ALREADY KNOWN ABOUT THIS TOPIC?: Diagnostic tests and sample types for SARS-CoV-2 vary in sensitivity across the infection period. WHAT IS ADDED BY THIS REPORT?: We show that both RTqPCR (from nasal swab and saliva) and the Quidel SARS Sofia FIA rapid antigen tests peak in sensitivity during the period in which live virus can be detected in nasal swabs, but that the sensitivity of RTqPCR tests rises more rapidly in the pre-infectious period. We also use empirical data to estimate the sensitivities of RTqPCR and antigen tests as a function of testing frequency. WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE?: RTqPCR tests will be more effective than rapid antigen tests at identifying infected individuals prior to or early during the infectious period and thus for minimizing forward transmission (provided results reporting is timely). All modalities, including rapid antigen tests, showed >94% sensitivity to detect infection if used at least twice per week. Regular surveillance/screening using rapid antigen tests 2-3 times per week can be an effective strategy to achieve high sensitivity (>95%) for identifying infected individuals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA