Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
CPT Pharmacometrics Syst Pharmacol ; 12(5): 681-689, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37025064

RESUMO

The medical literature is replete with articles in which there is confusion between "free concentration" and "unbound fraction" (fu ), which is the ratio of free to total plasma concentration. The lack of clarity in distinguishing between these two terms has led to biased computations, erroneous interpretations, and misleading recommendations. The problems are highlighted in this paper, taking the example of calculation of Probability of Target Attainment (PTA). This metric is used to propose pharmacokinetic/pharmacodynamic (PK/PD) breakpoints required for the interpretation of Antimicrobial Susceptibility Testing. Based on Monte Carlo simulations of the PK/PD index, area under the unbound concentration time curve/minimum inhibitory concentration (fAUC/MIC), computation of PTA from total plasma concentrations scaled by fu ineluctably leads to biased estimates. The bias is greater if the variability associated with fu is added, instead of removing it during this scaling. The explanation for the bias is that total plasma drug concentrations are intrinsically more variable than the corresponding free concentrations. This is due to the variability of antimicrobial binding for total, but not for free plasma concentrations. In consequence, the greater variability always leads to underestimation of the PK/PD cutoff (i.e., the critical MIC that is guaranteed for a given percentile of the population). A further consequence is an increase in calculated dosage required to attain the targeted quantile. This erroneous approach, of using free antimicrobial drug fraction, is not limited to the derivation of PK/PD cutoff, but may also have consequences for antimicrobials drug safety in clinical patients.


Assuntos
Antibacterianos , Anti-Infecciosos , Humanos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana , Probabilidade , Método de Monte Carlo
2.
BMC Vet Res ; 13(1): 209, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28666426

RESUMO

BACKGROUND: Bacterial pneumonia in pigs occurs widely and requires antimicrobial therapy. It is commonly caused by the pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida. Marbofloxacin is an antimicrobial drug of the fluoroquinolone class, licensed for use against these organisms in the pig. In recent years there have been major developments in dosage schedule design, based on integration and modelling of pharmacokinetic (PK) and pharmacodynamic (PD) data, with the objective of optimising efficacy and minimising the emergence of resistance. From in vitro time-kill curves in pig serum, PK/PD breakpoint Area under the curve (AUC) 24h /minimum inhibitory concentration (MIC) values were determined and used in conjunction with published PK, serum protein binding data and MIC distributions to predict dosages based on Monte Carlo simulation (MCS). RESULTS: For three levels of inhibition of growth, bacteriostasis and 3 and 4log10 reductions in bacterial count, mean AUC24h/MIC values were 20.9, 45.2 and 71.7 h, respectively, for P. multocida and 32.4, 48.7 and 55.5 h for A. pleuropneumoniae. Based on these breakpoint values, doses for each pathogen were predicted for several clinical scenarios: (1) bacteriostatic and bactericidal levels of kill; (2) 50 and 90% target attainment rates (TAR); and (3) single dosing and daily dosing at steady state. MCS for 90% TAR predicted single doses to achieve bacteriostatic and bactericidal actions over 48 h of 0.44 and 0.95 mg/kg (P. multocida) and 0.28 and 0.66 mg/kg (A. pleuropneumoniae). For daily doses at steady state, and 90% TAR bacteriostatic and bactericidal actions, dosages of 0.28 and 0.59 mg/kg (P. multocida) and 0.22 and 0.39 mg/kg (A. pleuropneumoniae) were required for pigs aged 12 weeks. Doses were also predicted for pigs aged 16 and 27 weeks. CONCLUSIONS: PK/PD modelling with MCS approaches to dose determination demonstrates the possibility of tailoring clinical dose rates to a range of bacterial kill end-points.


Assuntos
Actinobacillus pleuropneumoniae/efeitos dos fármacos , Antibacterianos/farmacocinética , Fluoroquinolonas/farmacocinética , Pasteurella multocida/efeitos dos fármacos , Pneumonia Bacteriana/veterinária , Animais , Antibacterianos/farmacologia , Relação Dose-Resposta a Droga , Fluoroquinolonas/farmacologia , Testes de Sensibilidade Microbiana/veterinária , Modelos Biológicos , Método de Monte Carlo , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/metabolismo , Suínos
3.
PLoS One ; 12(5): e0177568, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28552968

RESUMO

Pharmacokinetic-pharmacodynamic (PK/PD) integration and modelling were used to predict dosage schedules for florfenicol for two pig pneumonia pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. Pharmacokinetic data were pooled for two bioequivalent products, pioneer and generic formulations, administered intramuscularly to pigs at a dose rate of 15 mg/kg. Antibacterial potency was determined in vitro as minimum inhibitory concentration (MIC) and Mutant Prevention Concentration in broth and pig serum, for six isolates of each organism. For both organisms and for both serum and broth MICs, average concentration:MIC ratios over 48 h were similar and exceeded 2.5:1 and times greater than MIC exceeded 35 h. From in vitro time-kill curves, PK/PD modelling established serum breakpoint values for the index AUC24h/MIC for three levels of inhibition of growth, bacteriostasis and 3 and 4log10 reductions in bacterial count; means were 25.7, 40.2 and 47.0 h, respectively, for P. multocida and 24.6, 43.8 and 58.6 h for A. pleuropneumoniae. Using these PK and PD data, together with literature MIC distributions, doses for each pathogen were predicted for: (1) bacteriostatic and bactericidal levels of kill; (2) for 50 and 90% target attainment rates (TAR); and (3) for single dosing and daily dosing at steady state. Monte Carlo simulations for 90% TAR predicted single doses to achieve bacteriostatic and bactericidal actions over 48 h of 14.4 and 22.2 mg/kg (P. multocida) and 44.7 and 86.6 mg/kg (A. pleuropneumoniae). For daily doses at steady state, and 90% TAR bacteriostatic and bactericidal actions, dosages of 6.2 and 9.6 mg/kg (P. multocida) and 18.2 and 35.2 mg/kg (A. pleuropneumoniae) were required. PK/PD integration and modelling approaches to dose determination indicate the possibility of tailoring dose to a range of end-points.


Assuntos
Actinobacillus pleuropneumoniae/efeitos dos fármacos , Antibacterianos/farmacologia , Pasteurella multocida/efeitos dos fármacos , Tianfenicol/análogos & derivados , Animais , Antibacterianos/farmacocinética , Área Sob a Curva , Testes de Sensibilidade Microbiana , Método de Monte Carlo , Suínos , Tianfenicol/farmacocinética , Tianfenicol/farmacologia
4.
Exp Brain Res ; 232(8): 2685-97, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24792501

RESUMO

Cisplatin is a highly emetogenic cancer chemotherapy agent, which is often used to induce nausea and emesis in animal models. The cytotoxic properties of cisplatin also cause adverse events that negatively impact on animal welfare preventing repeated administration of cisplatin. In this study, we assessed whether a low (subclinical) dose of cisplatin could be utilized as a model of nausea and emesis in the dog while decreasing the severity of adverse events to allow repeated administration. The emetic, nausea-like behavior and potential biomarker response to both the clinical dose (70 mg/m2) and low dose (15 mg/m2) of cisplatin was assessed. Plasma creatinine concentrations and granulocyte counts were used to assess adverse effects on the kidneys and bone marrow, respectively. Nausea-like behavior and emesis was induced by both doses of cisplatin, but the latency to onset was greater in the low-dose group. No significant change in plasma creatinine was detected for either dose groups. Granulocytes were significantly reduced compared with baseline (P = 0.000) following the clinical, but not the low-dose cisplatin group. Tolerability of repeated administration was assessed with 4 administrations of an 18 mg/m2 dose cisplatin. Plasma creatinine did not change significantly. Cumulative effects on the granulocytes occurred, they were significantly decreased (P = 0.03) from baseline at 3 weeks following cisplatin for the 4th administration only. Our results suggest that subclinical doses (15 and 18 mg/m2) of cisplatin induce nausea-like behavior and emesis but have reduced adverse effects compared with the clinical dose allowing for repeated administration in crossover studies.


Assuntos
Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Náusea/induzido quimicamente , Vômito/induzido quimicamente , Animais , Arginina Vasopressina/sangue , Creatinina/sangue , Modelos Animais de Doenças , Cães , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Granulócitos/patologia , Hidrocortisona/sangue , Modelos Lineares , Masculino , Náusea/sangue , Náusea/patologia , Radioimunoensaio , Fatores de Tempo , Escala Visual Analógica , Vômito/sangue , Vômito/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA