Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 21(5): 2065-2080, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38600804

RESUMO

Physiologically based biopharmaceutics modeling (PBBM) is used to elevate drug product quality by providing a more accurate and holistic understanding of how drugs interact with the human body. These models are based on the integration of physiological, pharmacological, and pharmaceutical data to simulate and predict drug behavior in vivo. Effective utilization of PBBM requires a consistent approach to model development, verification, validation, and application. Currently, only one country has a draft guidance document for PBBM, whereas other major regulatory authorities have had limited experience with the review of PBBM. To address this gap, industry submitted confidential PBBM case studies to be reviewed by the regulatory agencies; software companies committed to training. PBBM cases were independently and collaboratively discussed by regulators, and academic colleagues participated in some of the discussions. Successful bioequivalence "safe space" industry case examples are also presented. Overall, six regulatory agencies were involved in the case study exercises, including ANVISA, FDA, Health Canada, MHRA, PMDA, and EMA (experts from Belgium, Germany, Norway, Portugal, Spain, and Sweden), and we believe this is the first time such a collaboration has taken place. The outcomes were presented at this workshop, together with a participant survey on the utility and experience with PBBM submissions, to discuss the best scientific practices for developing, validating, and applying PBBMs. The PBBM case studies enabled industry to receive constructive feedback from global regulators and highlighted clear direction for future PBBM submissions for regulatory consideration.


Assuntos
Biofarmácia , Indústria Farmacêutica , Humanos , Biofarmácia/métodos , Indústria Farmacêutica/métodos , Modelos Biológicos , Equivalência Terapêutica , Preparações Farmacêuticas/química , Estados Unidos
2.
AAPS J ; 25(4): 60, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322223

RESUMO

Current regulatory guidelines on drug-food interactions recommend an early assessment of food effect to inform clinical dosing instructions, as well as a pivotal food effect study on the to-be-marketed formulation if different from that used in earlier trials. Study waivers are currently only granted for BCS class 1 drugs. Thus, repeated food effect studies are prevalent in clinical development, with the initial evaluation conducted as early as the first-in-human studies. Information on repeated food effect studies is not common in the public domain. The goal of the work presented in this manuscript from the Food Effect PBPK IQ Working Group was to compile a dataset on these studies across pharmaceutical companies and provide recommendations on their conduct. Based on 54 studies collected, we report that most of the repeat food effect studies do not result in meaningful differences in the assessment of the food effect. Seldom changes observed were more than twofold. There was no clear relationship between the change in food effect and the formulation change, indicating that in most cases, once a compound is formulated appropriately within a specific formulation technology, the food effect is primarily driven by inherent compound properties. Representative examples of PBPK models demonstrate that following appropriate validation of the model with the initial food effect study, the models can be applied to future formulations. We recommend that repeat food effect studies should be approached on a case-by-case basis taking into account the totality of the evidence including the use of PBPK modeling.


Assuntos
Interações Alimento-Droga , Modelos Biológicos , Humanos , Solubilidade , Simulação por Computador , Alimentos
3.
AAPS J ; 21(2): 19, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30673891

RESUMO

The establishment of an in vitro-in vivo correlation (IVIVC) is considered the gold standard to establish in vivo relevance of a dissolution method and to utilize dissolution data in the context of regulatory bioequivalence questions, including the development of dissolution specifications. However, several recent publications, including industry surveys and reviews from regulatory agencies, have indicated a low success rate for IVIVCs, especially for immediate-release formulations. In recent years, the use of physiologically based pharmacokinetics (PBPK) and absorption modeling, as a tool to facilitate formulation development, has been attracting increased attention. This manuscript provides an industry perspective on the current challenges with establishing IVIVCs and the potential PBPK and absorption modeling offer to increase their impact. Case studies across both immediate-release and extended-release formulations from five pharmaceutical companies are utilized to demonstrate how physiologically based IVIVC (PB-IVIVC) may facilitate drug product understanding and to inform bioequivalence assessment and clinically relevant specifications. Finally, PB-IVIVC best practices and a strategy for model development and application are proposed.


Assuntos
Absorção Fisiológica , Produtos Biológicos/farmacocinética , Desenvolvimento de Medicamentos/normas , Indústria Farmacêutica/normas , Modelos Biológicos , Administração Oral , Produtos Biológicos/administração & dosagem , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Desenvolvimento de Medicamentos/métodos , Liberação Controlada de Fármacos , Guias como Assunto , Humanos , Solubilidade , Equivalência Terapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA