Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Toxicol ; 4: 786057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399296

RESUMO

Several approaches have been used in an attempt to simplify and codify the events that lead to adverse effects of chemicals including systems biology, 'omics, in vitro assays and frameworks such as the Adverse Outcome Pathway (AOP). However, these approaches are generally not integrated despite their complementary nature. Here we propose to integrate toxicogenomics data, systems biology information and AOPs using causal biological networks to define Key Events in AOPs. We demonstrate this by developing a causal subnetwork of 28 nodes that represents the Key Event of regenerative proliferation - a critical event in AOPs for liver cancer. We then assessed the effects of three chemicals known to cause liver injury and cell proliferation (carbon tetrachloride, aflatoxin B1, thioacetamide) and two with no known cell proliferation effects (diazepam, simvastatin) on the subnetwork using rat liver gene expression data from the toxicogenomic database Open TG-GATEs. Cyclin D1 (Ccnd1), a gene both causally linked to and sufficient to infer regenerative proliferation activity, was overexpressed after exposures to carbon tetrachloride, aflatoxin B1 and thioacetamide, but not in exposures to diazepam and simvastatin. These results were consistent with known effects on rat livers and liver pathology of exposed rats. Using these approaches, we demonstrate that transcriptomics, AOPs and systems biology can be applied to examine the presence and progression of AOPs in order to better understand the hazards of chemical exposure.

2.
PLoS One ; 14(12): e0226687, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31877201

RESUMO

Large scale biological responses are inherently uncertain, in part as a consequence of noisy systems that do not respond deterministically to perturbations and measurement errors inherent to technological limitations. As a result, they are computationally difficult to model and current approaches are notoriously slow and computationally intensive (multiscale stochastic models), fail to capture the effects of noise across a system (chemical kinetic models), or fail to provide sufficient biological fidelity because of broad simplifying assumptions (stochastic differential equations). We use a new approach to modeling multiscale stationary biological processes that embraces the noise found in experimental data to provide estimates of the parameter uncertainties and the potential mis-specification of models. Our approach models the mean stationary response at each biological level given a particular expected response relationship, capturing variation around this mean using conditional Monte Carlo sampling that is statistically consistent with training data. A conditional probability distribution associated with a biological response can be reconstructed using this method for a subset of input values, which overcomes the parameter identification problem. Our approach could be applied in addition to dynamical modeling methods (see above) to predict uncertain biological responses over experimental time scales. To illustrate this point, we apply the approach to a test case in which we model the variation associated with measurements at multiple scales of organization across a reproduction-related Adverse Outcome Pathway described for teleosts.


Assuntos
Simulação por Computador , Cyprinidae/fisiologia , Modelos Biológicos , Algoritmos , Animais , Feminino , Método de Monte Carlo , Reprodução , Processos Estocásticos
3.
Environ Toxicol Chem ; 38(9): 1850-1865, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31127958

RESUMO

An important goal in toxicology is the development of new ways to increase the speed, accuracy, and applicability of chemical hazard and risk assessment approaches. A promising route is the integration of in vitro assays with biological pathway information. We examined how the adverse outcome pathway (AOP) framework can be used to develop pathway-based quantitative models useful for regulatory chemical safety assessment. By using AOPs as initial conceptual models and the AOP knowledge base as a source of data on key event relationships, different methods can be applied to develop computational quantitative AOP models (qAOPs) relevant for decision making. A qAOP model may not necessarily have the same structure as the AOP it is based on. Useful AOP modeling methods range from statistical, Bayesian networks, regression, and ordinary differential equations to individual-based models and should be chosen according to the questions being asked and the data available. We discuss the need for toxicokinetic models to provide linkages between exposure and qAOPs, to extrapolate from in vitro to in vivo, and to extrapolate across species. Finally, we identify best practices for modeling and model building and the necessity for transparent and comprehensive documentation to gain confidence in the use of qAOP models and ultimately their use in regulatory applications. Environ Toxicol Chem 2019;38:1850-1865. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Ecotoxicologia/métodos , Substâncias Perigosas/toxicidade , Modelos Teóricos , Rotas de Resultados Adversos , Animais , Teorema de Bayes , Tomada de Decisões , Substâncias Perigosas/farmacocinética , Humanos , Projetos de Pesquisa , Medição de Risco , Toxicocinética
4.
Toxicol Sci ; 158(2): 252-262, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28525648

RESUMO

In conjunction with the second International Environmental Omics Symposium (iEOS) conference, held at the University of Liverpool (United Kingdom) in September 2014, a workshop was held to bring together experts in toxicology and regulatory science from academia, government and industry. The purpose of the workshop was to review the specific roles that high-content omics datasets (eg, transcriptomics, metabolomics, lipidomics, and proteomics) can hold within the adverse outcome pathway (AOP) framework for supporting ecological and human health risk assessments. In light of the growing number of examples of the application of omics data in the context of ecological risk assessment, we considered how omics datasets might continue to support the AOP framework. In particular, the role of omics in identifying potential AOP molecular initiating events and providing supportive evidence of key events at different levels of biological organization and across taxonomic groups was discussed. Areas with potential for short and medium-term breakthroughs were also discussed, such as providing mechanistic evidence to support chemical read-across, providing weight of evidence information for mode of action assignment, understanding biological networks, and developing robust extrapolations of species-sensitivity. Key challenges that need to be addressed were considered, including the need for a cohesive approach towards experimental design, the lack of a mutually agreed framework to quantitatively link genes and pathways to key events, and the need for better interpretation of chemically induced changes at the molecular level. This article was developed to provide an overview of ecological risk assessment process and a perspective on how high content molecular-level datasets can support the future of assessment procedures through the AOP framework.


Assuntos
Rotas de Resultados Adversos , Metabolismo dos Lipídeos , Metabolômica , Proteômica , Transcriptoma , Animais , Humanos , Medição de Risco
5.
Environ Health Perspect ; 124(11): 1671-1682, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27091369

RESUMO

BACKGROUND: The Next Generation (NexGen) of Risk Assessment effort is a multi-year collaboration among several organizations evaluating new, potentially more efficient molecular, computational, and systems biology approaches to risk assessment. This article summarizes our findings, suggests applications to risk assessment, and identifies strategic research directions. OBJECTIVE: Our specific objectives were to test whether advanced biological data and methods could better inform our understanding of public health risks posed by environmental exposures. METHODS: New data and methods were applied and evaluated for use in hazard identification and dose-response assessment. Biomarkers of exposure and effect, and risk characterization were also examined. Consideration was given to various decision contexts with increasing regulatory and public health impacts. Data types included transcriptomics, genomics, and proteomics. Methods included molecular epidemiology and clinical studies, bioinformatic knowledge mining, pathway and network analyses, short-duration in vivo and in vitro bioassays, and quantitative structure activity relationship modeling. DISCUSSION: NexGen has advanced our ability to apply new science by more rapidly identifying chemicals and exposures of potential concern, helping characterize mechanisms of action that influence conclusions about causality, exposure-response relationships, susceptibility and cumulative risk, and by elucidating new biomarkers of exposure and effects. Additionally, NexGen has fostered extensive discussion among risk scientists and managers and improved confidence in interpreting and applying new data streams. CONCLUSIONS: While considerable uncertainties remain, thoughtful application of new knowledge to risk assessment appears reasonable for augmenting major scope assessments, forming the basis for or augmenting limited scope assessments, and for prioritization and screening of very data limited chemicals. Citation: Cote I, Andersen ME, Ankley GT, Barone S, Birnbaum LS, Boekelheide K, Bois FY, Burgoon LD, Chiu WA, Crawford-Brown D, Crofton KM, DeVito M, Devlin RB, Edwards SW, Guyton KZ, Hattis D, Judson RS, Knight D, Krewski D, Lambert J, Maull EA, Mendrick D, Paoli GM, Patel CJ, Perkins EJ, Poje G, Portier CJ, Rusyn I, Schulte PA, Simeonov A, Smith MT, Thayer KA, Thomas RS, Thomas R, Tice RR, Vandenberg JJ, Villeneuve DL, Wesselkamper S, Whelan M, Whittaker C, White R, Xia M, Yauk C, Zeise L, Zhao J, DeWoskin RS. 2016. The Next Generation of Risk Assessment multiyear study-highlights of findings, applications to risk assessment, and future directions. Environ Health Perspect 124:1671-1682; http://dx.doi.org/10.1289/EHP233.


Assuntos
Monitoramento Ambiental/métodos , Medição de Risco/métodos , Poluentes Ambientais/toxicidade , Saúde Pública/métodos , Saúde Pública/tendências , Medição de Risco/tendências
6.
Regul Toxicol Pharmacol ; 75: 46-57, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26724267

RESUMO

The adverse outcome pathway (AOP) is a framework to mechanistically link molecular initiating events to adverse biological outcomes. From a regulatory perspective, it is of crucial importance to determine the confidence for the AOP in question as well as the quality of data available in supporting this evaluation. A weight of evidence approach has been proposed for this task, but many of the existing frameworks for weight of evidence evaluation are qualitative and there is not clear guidance regarding how weight of evidence should be calculated for an AOP. In this paper we advocate the use of a subject matter expertise driven approach for weight of evidence evaluation based on criteria and metrics related to data quality and the strength of causal linkages between key events. As a demonstration, we notionally determine weight of evidence scores for two AOPs: Non-competitive ionotropic GABA receptor antagonism leading to epileptic seizures, and Antagonist-binding and stabilization of a co-repressor to the peroxisome proliferator-activated receptor α (PPARα) signaling complex ultimately causing starvation-like weight loss.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Modelos Biológicos , Animais , Emaciação/induzido quimicamente , Epilepsia/induzido quimicamente , Antagonistas GABAérgicos/efeitos adversos , Humanos , Moduladores de Transporte de Membrana/efeitos adversos , PPAR alfa/antagonistas & inibidores , Medição de Risco , Redução de Peso/efeitos dos fármacos
7.
Toxicol Sci ; 148(1): 14-25, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26500288

RESUMO

Adverse outcome pathways (AOPs) offer a pathway-based toxicological framework to support hazard assessment and regulatory decision-making. However, little has been discussed about the scientific confidence needed, or how complete a pathway should be, before use in a specific regulatory application. Here we review four case studies to explore the degree of scientific confidence and extent of completeness (in terms of causal events) that is required for an AOP to be useful for a specific purpose in a regulatory application: (i) Membrane disruption (Narcosis) leading to respiratory failure (low confidence), (ii) Hepatocellular proliferation leading to cancer (partial pathway, moderate confidence), (iii) Covalent binding to proteins leading to skin sensitization (high confidence), and (iv) Aromatase inhibition leading to reproductive dysfunction in fish (high confidence). Partially complete AOPs with unknown molecular initiating events, such as 'Hepatocellular proliferation leading to cancer', were found to be valuable. We demonstrate that scientific confidence in these pathways can be increased though the use of unconventional information (eg, computational identification of potential initiators). AOPs at all levels of confidence can contribute to specific uses. A significant statistical or quantitative relationship between events and/or the adverse outcome relationships is a common characteristic of AOPs, both incomplete and complete, that have specific regulatory uses. For AOPs to be useful in a regulatory context they must be at least as useful as the tools that regulators currently possess, or the techniques currently employed by regulators.


Assuntos
Ecotoxicologia/métodos , Poluentes Ambientais/toxicidade , Prática Clínica Baseada em Evidências , Modelos Biológicos , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Animais , Inibidores da Aromatase/toxicidade , Carcinógenos Ambientais/toxicidade , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Biologia Computacional , Congressos como Assunto , Tomada de Decisões Gerenciais , Dermatite Alérgica de Contato/etiologia , Dermatite Alérgica de Contato/imunologia , Dermatite Alérgica de Contato/metabolismo , Dermatite Alérgica de Contato/patologia , Ecotoxicologia/legislação & jurisprudência , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Organização para a Cooperação e Desenvolvimento Econômico , Medição de Risco/métodos , Medição de Risco/normas , Pele/efeitos dos fármacos , Pele/imunologia , Pele/metabolismo , Pele/patologia , Testes de Toxicidade Aguda/normas , Testes de Toxicidade Crônica/normas
8.
PLoS One ; 9(12): e110379, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25531884

RESUMO

Environmental health risk assessors are challenged to understand and incorporate new data streams as the field of toxicology continues to adopt new molecular and systems biology technologies. Systematic screening reviews can help risk assessors and assessment teams determine which studies to consider for inclusion in a human health assessment. A tool for systematic reviews should be standardized and transparent in order to consistently determine which studies meet minimum quality criteria prior to performing in-depth analyses of the data. The Systematic Omics Analysis Review (SOAR) tool is focused on assisting risk assessment support teams in performing systematic reviews of transcriptomic studies. SOAR is a spreadsheet tool of 35 objective questions developed by domain experts, focused on transcriptomic microarray studies, and including four main topics: test system, test substance, experimental design, and microarray data. The tool will be used as a guide to identify studies that meet basic published quality criteria, such as those defined by the Minimum Information About a Microarray Experiment standard and the Toxicological Data Reliability Assessment Tool. Seven scientists were recruited to test the tool by using it to independently rate 15 published manuscripts that study chemical exposures with microarrays. Using their feedback, questions were weighted based on importance of the information and a suitability cutoff was set for each of the four topic sections. The final validation resulted in 100% agreement between the users on four separate manuscripts, showing that the SOAR tool may be used to facilitate the standardized and transparent screening of microarray literature for environmental human health risk assessment.


Assuntos
Ecotoxicologia/métodos , Perfilação da Expressão Gênica , Literatura de Revisão como Assunto , Medição de Risco/métodos , Toxicogenética/métodos , Animais , Ecotoxicologia/normas , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Padrões de Referência , Medição de Risco/normas , Inquéritos e Questionários , Toxicogenética/normas
9.
BMC Bioinformatics ; 14 Suppl 14: S3, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24268022

RESUMO

BACKGROUND: Pathway alterations reflected as changes in gene expression regulation and gene interaction can result from cellular exposure to toxicants. Such information is often used to elucidate toxicological modes of action. From a risk assessment perspective, alterations in biological pathways are a rich resource for setting toxicant thresholds, which may be more sensitive and mechanism-informed than traditional toxicity endpoints. Here we developed a novel differential networks (DNs) approach to connect pathway perturbation with toxicity threshold setting. METHODS: Our DNs approach consists of 6 steps: time-series gene expression data collection, identification of altered genes, gene interaction network reconstruction, differential edge inference, mapping of genes with differential edges to pathways, and establishment of causal relationships between chemical concentration and perturbed pathways. A one-sample Gaussian process model and a linear regression model were used to identify genes that exhibited significant profile changes across an entire time course and between treatments, respectively. Interaction networks of differentially expressed (DE) genes were reconstructed for different treatments using a state space model and then compared to infer differential edges/interactions. DE genes possessing differential edges were mapped to biological pathways in databases such as KEGG pathways. RESULTS: Using the DNs approach, we analyzed a time-series Escherichia coli live cell gene expression dataset consisting of 4 treatments (control, 10, 100, 1000 mg/L naphthenic acids, NAs) and 18 time points. Through comparison of reconstructed networks and construction of differential networks, 80 genes were identified as DE genes with a significant number of differential edges, and 22 KEGG pathways were altered in a concentration-dependent manner. Some of these pathways were perturbed to a degree as high as 70% even at the lowest exposure concentration, implying a high sensitivity of our DNs approach. CONCLUSIONS: Findings from this proof-of-concept study suggest that our approach has a great potential in providing a novel and sensitive tool for threshold setting in chemical risk assessment. In future work, we plan to analyze more time-series datasets with a full spectrum of concentrations and sufficient replications per treatment. The pathway alteration-derived thresholds will also be compared with those derived from apical endpoints such as cell growth rate.


Assuntos
Escherichia coli/genética , Redes Reguladoras de Genes/efeitos dos fármacos , Ciclo Celular , Epistasia Genética , Escherichia coli/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Medição de Risco
10.
Environ Sci Technol ; 46(1): 51-9, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-21786754

RESUMO

Effects of bisphenol A (BPA) on ovarian transcript profiles as well as targeted end points with endocrine/reproductive relevance were examined in two fish species, fathead minnow (Pimephales promelas) and zebrafish (Danio rerio), exposed in parallel using matched experimental designs. Four days of waterborne exposure to 10 µg BPA/L caused significant vitellogenin induction in both species. However, zebrafish were less sensitive to effects on hepatic gene expression and steroid production than fathead minnow and the magnitude of vitellogenin induction was more modest (i.e., 3-fold compared to 13,000-fold in fathead minnow). The concentration-response at the ovarian transcriptome level was nonmonotonic and violated assumptions that underlie proposed methods for estimating hazard thresholds from transcriptomic results. However, the nonmonotonic profile was consistent among species and there were nominal similarities in the functions associated with the differentially expressed genes, suggesting potential activation of common pathway perturbation motifs in both species. Overall, the results provide an effective case study for considering the potential application of ecotoxicogenomics to ecological risk assessments and provide novel comparative data regarding effects of BPA in fish.


Assuntos
Cyprinidae/genética , Ecotoxicologia/métodos , Metagenômica/métodos , Fenóis/toxicidade , Testes de Toxicidade , Peixe-Zebra/genética , Animais , Compostos Benzidrílicos , Cyprinidae/sangue , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal , Reprodutibilidade dos Testes , Medição de Risco , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Vitelogeninas/sangue
11.
Environ Sci Technol ; 46(1): 42-50, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-21744839

RESUMO

Small organisms can be used as biomonitoring tools to assess chemicals in the environment. Chemical stressors are especially hard to assess and monitor when present as complex mixtures. Here, fifteen polymerase chain reaction assays targeting Daphnia magna genes were calibrated to responses elicited in D. magna exposed for 24 h to five different doses each of the munitions constituents 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, 2,6-dinitrotoluene, trinitrobenzene, dinitrobenzene, or 1,3,5-trinitro-1,3,5-triazacyclohexane. A piecewise-linear model for log-fold expression changes in gene assays was used to predict response to munitions mixtures and contaminated groundwater under the assumption that chemical effects were additive. The correlations of model predictions with actual expression changes ranged from 0.12 to 0.78 with an average of 0.5. To better understand possible mixture effects, gene expression changes from all treatments were compared using high-density microarrays. Whereas mixtures and groundwater exposures had genes and gene functions in common with single chemical exposures, unique functions were also affected, which was consistent with the nonadditivity of chemical effects in these mixtures. These results suggest that, while gene behavior in response to chemical exposure can be partially predicted based on chemical exposure, estimation of the composition of mixtures from chemical responses is difficult without further understanding of gene behavior in mixtures. Future work will need to examine additive and nonadditive mixture effects using a much greater range of different chemical classes in order to clarify the behavior and predictability of complex mixtures.


Assuntos
Daphnia/efeitos dos fármacos , Daphnia/genética , Perfilação da Expressão Gênica/métodos , Água Subterrânea/química , Transcriptoma/genética , Poluentes Químicos da Água/toxicidade , Animais , Exposição Ambiental/análise , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/genética , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Testes de Toxicidade , Transcriptoma/efeitos dos fármacos
12.
BMC Bioinformatics ; 12 Suppl 10: S18, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-22165905

RESUMO

BACKGROUND: Proteins search along the DNA for targets, such as transcription initiation sequences, according to one-dimensional diffusion, which is interrupted by micro- and macro-hopping events and intersegmental transfers that occur under close packing conditions. RESULTS: A one-dimensional diffusion-reaction model in the form of difference-differential equations is proposed to analyze the nonequilibrium protein sliding kinetics along a segment of bacterial DNA. A renormalization approach is used to derive an expression for the mean first-passage time to arrive at sites downstream of the origin from the occupation probabilities given by the individual transport equations. Monte Carlo simulations are employed to assess the validity of the proposed approach, and all results are interpreted within the context of bacterial transcription. CONCLUSIONS: Mean first-passage times decrease with increasing reaction rates, indicating that, on average, surviving proteins more rapidly locate downstream targets than their reaction-free counterparts, but at the price of increasing rarity. Two qualitatively different screening regimes are identified according to whether the search process operates under "small" or "large" values for the dissociation rate of the protein-DNA complex. Lower bounds are placed on the overall search time for varying reactive conditions. Good agreement with experimental estimates requires the reaction rate reside near the transition between both screening regimes, suggesting that biology balances a need for rapid searches against maximum exploration during each round of the sliding phase.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Biológicos , Difusão , Cinética , Método de Monte Carlo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA