Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Med ; 121: 103370, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677196

RESUMO

The Leksell Gamma Knife® Perfexion™ and Icon™ have a unique geometry, containing 192 60Co sources with collimation for field sizes of 4 mm, 8 mm, and 16 mm. 4 mm and 8 mm collimated fields lack lateral charged particle equilibrium, so accurate field output factors are essential. This study performs field output factor measurements for the microDiamond, microSilicon, and RAZOR™ Nano detectors. 3D printed inserts for the spherical Solid Water® Phantom were fabricated for microDiamond detector, the microSilicon unshielded diode and the RAZOR™ Nano micro-ionisation chamber. Detectors were moved iteratively to identify the peak detector signal for each collimator, representing the effective point of measurement of the chamber. In addition, field output correction factors were calculated for each detector relative to vendor supplied Monte Carlo simulated field output factors and field output factors measured with a W2 scintillator. All field output factors where within 1.1 % for the 4 mm collimator and within 2.3 % for the 8 mm collimator. The 3D printed phantom inserts were suitable for routine measurements if the user identifies the effective point of measurement, and ensures a reproducible setup by marking the rotational alignment of the cylindrical print. Measurements with the microDiamond and microSilicon can be performed faster compared to the RAZOR™ Nano due to differences in the signal to noise ratio. All detectors are suitable for field output factor measurements for the Leksell Gamma Knife® Perfexion™ and Icon™.


Assuntos
Imagens de Fantasmas , Impressão Tridimensional , Radiometria , Radiocirurgia , Radiocirurgia/instrumentação , Radiometria/instrumentação , Método de Monte Carlo
2.
J Med Phys ; 47(3): 235-242, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684698

RESUMO

Aim: The aim of this study was to compare the Exradin W2 scintillator, PTW microDiamond, IBA Razor Nano, and IBA Razor chamber detectors for small-field dose measurements and validate the measured data against the EGSnrc user code and observe the variation between daisy-chained and direct measurement methods for the above detectors. Materials and Methods: The W2 scintillator, microDiamond, Razor Nano, and Razor chamber detectors were used to measure the in-plane and cross-plane profiles and the output factors (OFs) at 10 cm depth, and 90 source-to-surface distance for 6MV X-rays (Elekta Versa HD). The field sizes ranged from 0.5 cm × 0.5 cm to 5 cm × 5 cm. The BEAMnrc/DOSXYZnrc user codes (EGSnrc) were used to simulate the reference profiles. Gamma analysis was performed to compare the measured and simulated dose distributions. Results: The OFs measured with the W2 scintillator, microDiamond, Razor Nano chamber, Razor chamber, and the calculated Monte Carlo (MC) showed agreement to within 1% for the 3 cm × 3 cm field size. The uncertainty in the MC simulation was observed to be 0.4%. The percent difference in OFs measured using daisy-chained and direct measurement methods was within 0.15%, 0.4%, 1.4%, and 2.4% for microDiamond, W2 scintillator, Nano, and Razor chamber detectors, respectively. Conclusion: The lateral beam profiles and OFs of W2 scintillator, microDiamond, Razor Nano, and Razor chambers exhibit good agreement with the MC simulation within the nominal field sizes. Our results demonstrate that we can achieve considerable time-saving by directly measuring small-field OFs without daisy-chained methods using microDiamond and W2 scintillator. In terms of ease of use, sensitivity, reproducibility, and from a practical standpoint, we recommend microDiamond for small-field dosimetry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA