Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10240, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702364

RESUMO

This work presents the experimental assessment of a 20 mL batch reactor's efficacy in converting plastic and oil residues into biofuels. The reactor, designed for ease of use, is heated using a metallic system. The experiments explore plastic solubilization at various temperatures and residence times, employing a mixture of distilled water and ethylene glycol as the solvent. Initial findings reveal that plastic solubilization requires a temperature of 350 °C with an ethylene glycol mole fraction of 0.35, whereas 250 °C suffices with a mole fraction of 0.58. Additionally, the study includes a process simulation of a plant utilizing a double fluidized bed gasifier and an economic evaluation of the interesterification/pyrolysis plant. Simulation results support project feasibility, estimating a total investment cost of approximately $12.99 million and annual operating expenses of around $17.98 million, with a projected payback period of about 5 years.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA