Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 14(7): e0218814, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31365526

RESUMO

The purpose of this study was to apply texture analysis (TA) to evaluate the uniformity of SPECT images reconstructed with the 3D Ordered Subsets Expectation Maximization (3D-OSEM) algorithm. For this purpose, a cylindrical homogeneous phantom filled with 177Lu was used and a total of 24 spherical volumes of interest (VOIs) were considered inside the phantom. The location of the VOIs was chosen in order to define two different configurations, i.e. gravity and radial configuration. The former configuration was used to investigate the uniformity of distribution of 177Lu inside the phantom, while the latter configuration was used to investigate the lack of uniformity from center towards edge of the images. For each VOI, the trend of different texture features considered as a function of 3D-OSEM updates was investigated in order to evaluate the influence of reconstruction parameters. TA was performed using CGITA software. The equality of the average texture feature trends in both spatial configurations was assumed as the null hypothesis and was tested by functional analysis of variance (fANOVA). With regard to the gravity configuration, no texture feature rejected the null hypothesis when the number of subsets increased. For the radial configuration, the statistical analysis revealed that, depending on the 3D-OSEM parameters used, a few texture features were capable of detecting the non-uniformity of 177Lu distribution inside the phantom moving from the center of the image towards its edge. Finally, cross-correlation coefficients were calculated to better identify the features that could play an important role in assessing quality assurance procedures performed on SPECT systems.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Imagens de Fantasmas , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Algoritmos , Humanos , Lutécio/química , Lutécio/uso terapêutico , Radioisótopos/química , Radioisótopos/uso terapêutico , Software
2.
Biol Proced Online ; 19: 8, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28814944

RESUMO

BACKGROUND: Whatever the target of an experiment in cell biology, cell counting and viability assessment are always computed. The Trypan Blue (TB) assay was proposed about a century ago and is still the most widely used method to perform cell viability analysis. Furthermore, the combined use of TB with a haemocytometer is also considered the standard approach to estimate cell population density. There are numerous research articles reporting the use of TB assays to compute cell number and viability of 2D and 3D cultures. However, the literature still lacks studies regarding the reliability of the TB assay in terms of assessment of its repeatability and reproducibility. METHODS: We compared the TB assay's measurements obtained by two biologists who analysed 105 different samples in double-blind for a total of 210 counts performed. We measured: (a) the repeatability of the count performed by the same operator; (b) the reproducibility of counts performed by the two operators. RESULTS: There were no significant differences in the results obtained with 2D and 3D cell cultures: we estimated an approximate variability of 5% when the TB assay was used to assess the viability of the culture, and a variability of around 20% when it was used to determine the cell population density. CONCLUSIONS: The main aim of this study was to make researchers aware of potential measurement errors when TB is used with a haemocytometer for counting and viability measurements in 2D and 3D cultures. We believe that these results can help researchers to determine whether the expected reliability of the TB assay is compliant with their applications.

3.
Comput Methods Programs Biomed ; 118(2): 95-106, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25561413

RESUMO

Volume is one of the most important features for the characterization of a tumour on a macroscopic scale. It is often used to assess the effectiveness of care treatments, thus making its correct evaluation a crucial issue for patient care. Similarly, volume is a key feature on a microscopic scale. Multicellular cancer spheroids are 3D tumour models widely employed in pre-clinical studies to test the effects of drugs and radiotherapy treatments. Very few methods have been proposed to estimate the tumour volume arising from a 2D projection of multicellular spheroids, and even fewer have been designed to provide a 3D reconstruction of the tumour shape. In this work, we propose Reconstruction and Visualization from a Single Projection (ReViSP), an automatic method conceived to reconstruct the 3D surface and estimate the volume of single cancer multicellular spheroids, or even of spheroid cultures. As the input parameter ReViSP requires only one 2D projection, which could be a widefield microscope image. We assessed the effectiveness of our method by comparing it with other approaches. To this purpose, we used a new strategy that allowed us to achieve accurate volume measurements based on the analysis of home-made 3D objects, built by mimicking the spheroid morphology. The results confirmed the effectiveness of our method for both 3D reconstruction and volume assessment. ReViSP software is distributed as an open source tool.


Assuntos
Neoplasias/patologia , Esferoides Celulares , Linhagem Celular Tumoral , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Software
4.
Microsc Res Tech ; 75(11): 1582-92, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22972756

RESUMO

Due to depth of focus constraints, the acquisition of a single 2-D completely in-focus image of 3-D objects characterized by a relevant depth dimension is not possible with a standard light microscope. Since the Seventies numerous methods have been proposed to overcome this problem, mainly through different fusion processing techniques to extend the microscope's depth of focus. However, given a specific application, it is very difficult to know which method yields the best results because there are no validated approaches or tested metrics that are suitable for real world cases typically lacking in a reference ground truth. Although the Universal Quality Index (UQI) is widely used to evaluate output quality in image processing, it requires a reference ground truth. Some UQI extensions have been proposed to evaluate the output of fusion methods without a ground truth, but sufficient analyses have not been carried out to confirm their equivalence to the standard UQI in terms of (evaluation) performance. We propose a new method to extend the microscope's depth of focus and, using synthetic stacks of images with ground truth attached, show that it is superior to state-of-the-art methods. We also demonstrate that the output of metrics proposed as UQI extensions is different from that of the UQI. Finally, we validate a new approach to evaluate extended depth of focus methods using real world stacks of slices, as per the UQI, but without the need for a reference ground truth.


Assuntos
Imageamento Tridimensional/métodos , Microscopia/métodos , Células Epiteliais/citologia , Humanos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA