Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1389608, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841162

RESUMO

Objectives: Confocal laser endomicroscopy (CLE) is an intraoperative real-time cellular resolution imaging technology that images brain tumor histoarchitecture. Previously, we demonstrated that CLE images may be interpreted by neuropathologists to determine the presence of tumor infiltration at glioma margins. In this study, we assessed neurosurgeons' ability to interpret CLE images from glioma margins and compared their assessments to those of neuropathologists. Methods: In vivo CLE images acquired at the glioma margins that were previously reviewed by CLE-experienced neuropathologists were interpreted by four CLE-experienced neurosurgeons. A numerical scoring system from 0 to 5 and a dichotomous scoring system based on pathological features were used. Scores from assessments of hematoxylin and eosin (H&E)-stained sections and CLE images by neuropathologists from a previous study were used for comparison. Neurosurgeons' scores were compared to the H&E findings. The inter-rater agreement and diagnostic performance based on neurosurgeons' scores were calculated. The concordance between dichotomous and numerical scores was determined. Results: In all, 4275 images from 56 glioma margin regions of interest (ROIs) were included in the analysis. With the numerical scoring system, the inter-rater agreement for neurosurgeons interpreting CLE images was moderate for all ROIs (mean agreement, 61%), which was significantly better than the inter-rater agreement for the neuropathologists (mean agreement, 48%) (p < 0.01). The inter-rater agreement for neurosurgeons using the dichotomous scoring system was 83%. The concordance between the numerical and dichotomous scoring systems was 93%. The overall sensitivity, specificity, positive predictive value, and negative predictive value were 78%, 32%, 62%, and 50%, respectively, using the numerical scoring system and 80%, 27%, 61%, and 48%, respectively, using the dichotomous scoring system. No statistically significant differences in diagnostic performance were found between the neurosurgeons and neuropathologists. Conclusion: Neurosurgeons' performance in interpreting CLE images was comparable to that of neuropathologists. These results suggest that CLE could be used as an intraoperative guidance tool with neurosurgeons interpreting the images with or without assistance of the neuropathologists. The dichotomous scoring system is robust yet simple and may streamline rapid, simultaneous interpretation of CLE images during imaging.

2.
Front Neurol ; 15: 1374737, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38651109

RESUMO

Introduction: Assessing the treatment response of glioblastoma multiforme during immunotherapy (IT) is an open issue. Treatment response assessment maps (TRAMs) might help distinguish true tumor progression (TTP) and pseudoprogression (PsP) in this setting. Methods: We recruited 16 naïve glioblastoma patients enrolled in a phase II trial consisting of the Stupp protocol (a standardized treatment for glioblastoma involving combined radiotherapy and chemotherapy with temozolomide, followed by adjuvant temozolomide) plus IT with dendritic cells. Patients were followed up till progression or death; seven underwent a second surgery for suspected progression. Clinical, immunological, and MRI data were collected from all patients and histology in case of second surgery. Patients were classified as responders (progression-free survival, PFS > 12 months), and non-responders (PFS ≤ 12), HIGH-NK (natural killer cells, i.e., immunological responders), and LOW-NK (immunological non-responders) based on immune cell counts in peripheral blood. TRAMs differentiate contrast-enhancing lesions with different washout dynamics into hypothesized tumoral (conventionally blue-colored) vs. treatment-related (red-colored). Results: Using receiver operating characteristic (ROC) curves, a threshold of -0.066 in VBlue/VCE (volume of the blue portion of tumoral area/volume of contrast enhancement) variation between values obtained in the MRI performed before PsP/TTP and at TTP/PSP allowed to discriminate TTP from PsP with a sensitivity of 71.4% and a specificity of 100%. Among HIGH-NK patients, at month 6 there was a significant reduction compared to baseline and month 2 in median "blue" volumes. Discussion: In conclusion, in our pilot study TRAMs support the discrimination between tumoral and treatment-related enhancing features in immunological responders vs. non-responders, the distinction between PsP and TTP, and might provide surrogate markers of immunological response.

3.
Front Neurol ; 14: 1115325, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153668

RESUMO

Multiple hemorrhagic brain lesions are mainly diagnosed based on clinico-radiological features integrated with histological data. Intravascular papillary endothelial hyperplasia (IPEH), or Masson's tumor, is a very rare entity, particularly when localized in the brain. In this study, we describe a case of multiple recurrent brain IPEHs and provide details on the diagnostic phase, therapeutic approaches, and related challenges. A 55-year-old woman presented with a relapsing neurological deficit. Brain magnetic resonance imaging (MRI) revealed a hemorrhagic right frontal-parietal lesion. When new neurological symptoms occurred, subsequent MRI scans detected more bleeding cerebral lesions. She underwent a series of single hemorrhagic lesion debulking. For any samples that underwent histopathological examination, the first results were not informative; the second and the third results revealed hemangioendothelioma (HE); and the fourth results led to the IPEH diagnosis. Interferon alpha (IFN-α) and subsequently sirolimus were prescribed. Both were well tolerated. Clinical and radiological features remained stable 43 months after starting sirolimus therapy and 132 months after the first diagnosis. To date, 45 cases of intracranial IPEH have been reported, mostly as single lesions without parenchymal location. They are usually treated by surgery and sometimes by radiotherapy upon recurrence. Our case is notable for two main reasons: because of the consecutive recurrent multifocal exclusively cerebral lesions and the therapeutic approach we used. Based on multifocal brain recurrence and good performance, we propose pharmacological therapy, including IFN-α and sirolimus, to stabilize IPEH.

4.
J Neurosurg Sci ; 67(3): 280-287, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36112123

RESUMO

BACKGROUND: Confocal laser technology has been recently suggested as a promising method to obtain near real-time intraoperative histological data. We recently demonstrated the accuracy of a newly designed confocal endomiscroscope (CONVIVO) in offering an intraoperative diagnosis during high-grade gliomas (HGGs) removal in an ex vivo study. With this work we aim to perform a standardized, prospective and blinded-to-histological section study for evaluating the potentiality of CONVIVO in offering in-vivo data regarding histological diagnosis and presence of tumor at margins during resection of central nervous system (CNS) tumors. METHODS: This prospective, observational, standardized, blinded-to-histological section, clinical trial was approved by the institutional review board in Carlo Besta Neurologic Institute IRCCS Foundation in Milan and is expected to last 24 months. 75 patients will be included, with at least 53 of them being HGGs based on the statistical sample size calculation. Main objectives will be the assessing of the concordance of tumor diagnoses between CONVIVO images and frozen section at the center of all tumor subtypes and the evaluation of the accuracy of CONVIVO in the identification of tumor tissue at the margins, compared to standard histology. For this purpose, "virtual biopsies" and physical biopsies will be performed directly on patient tumor tissue and surrounding brain parenchima during tumor resection, comparing the results of CONVIVO analysis and frozen and histological sections. RESULTS: Despite promising preliminary data on ex vivo usefulness of CLE machines are emerging in literature, still few studies are available when looking at in vivo potentiality of CONVIVO. At this regard, this study will be the first work where a standardized, prospective, and blinded-to-histological section CONVIVO analysis will be performed in an in-vivo setting in neuro-oncological surgery. CONCLUSIONS: We hypothesize that this new technique may have a role in offering data regarding presence of tumor tissue, eventually giving an intraoperative diagnosis in neuro-oncological surgery, rendering more fluid the decision-making process in the operating room. Furthermore, the result of this study will provide a solid base for further expanding the clinical applications of confocal machines in neurosurgery.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Estudos Prospectivos , Glioma/diagnóstico , Glioma/cirurgia , Glioma/patologia , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/cirurgia , Neoplasias do Sistema Nervoso Central/patologia , Encéfalo/patologia , Estudos Observacionais como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA