Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3321, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637578

RESUMO

Trait-based frameworks are promising tools to understand the functional consequences of community shifts in response to environmental change. The applicability of these tools to soil microbes is limited by a lack of functional trait data and a focus on categorical traits. To address this gap for an important group of soil microorganisms, we identify trade-offs underlying a fungal economics spectrum based on a large trait collection in 28 saprobic fungal isolates, derived from a common grassland soil and grown in culture plates. In this dataset, ecologically relevant trait variation is best captured by a three-dimensional fungal economics space. The primary explanatory axis represents a dense-fast continuum, resembling dominant life-history trade-offs in other taxa. A second significant axis reflects mycelial flexibility, and a third one carbon acquisition traits. All three axes correlate with traits involved in soil carbon cycling. Since stress tolerance and fundamental niche gradients are primarily related to the dense-fast continuum, traits of the 2nd (carbon-use efficiency) and especially the 3rd (decomposition) orthogonal axes are independent of tested environmental stressors. These findings suggest a fungal economics space which can now be tested at broader scales.


Assuntos
Micélio , Solo , Fungos , Carbono , Microbiologia do Solo , Ecossistema
2.
Ecol Lett ; 22(11): 1757-1766, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31370098

RESUMO

Highly variable phenotypic responses in mycorrhizal plants challenge our functional understanding of plant-fungal mutualisms. Using non-invasive high-throughput phenotyping, we observed that arbuscular mycorrhizal (AM) fungi relieved phosphorus (P) limitation and enhanced growth of Brachypodium distachyon under P-limited conditions, while photosynthetic limitation under low nitrogen (N) was exacerbated by the fungus. However, these responses were strongly dependent on host genotype: only the faster growing genotype (Bd3-1) utilised P transferred from the fungus to achieve improved growth under P-limited conditions. Under low N, the slower growing genotype (Bd21) had a carbon and N surplus that was linked to a less negative growth response compared with the faster growing genotype. These responses were linked to the regulation of N : P stoichiometry, couples resource allocation to growth or luxury consumption in diverse plant lineages. Our results attest strongly to a mechanism in plants by which plant genotype-specific resource economics drive phenotypic outcomes during AM symbioses.


Assuntos
Micorrizas , Nitrogênio , Fósforo , Alocação de Recursos , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA