Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Adv ; 9(3): eadd5667, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36652527

RESUMO

The life span of leaves increases with their mass per unit area (LMA). It is unclear why. Here, we show that this empirical generalization (the foundation of the worldwide leaf economics spectrum) is a consequence of natural selection, maximizing average net carbon gain over the leaf life cycle. Analyzing two large leaf trait datasets, we show that evergreen and deciduous species with diverse construction costs (assumed proportional to LMA) are selected by light, temperature, and growing-season length in different, but predictable, ways. We quantitatively explain the observed divergent latitudinal trends in evergreen and deciduous LMA and show how local distributions of LMA arise by selection under different environmental conditions acting on the species pool. These results illustrate how optimality principles can underpin a new theory for plant geography and terrestrial carbon dynamics.

2.
New Phytol ; 228(1): 121-135, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32455476

RESUMO

Photosynthetic 'least-cost' theory posits that the optimal trait combination for a given environment is that where the summed costs of photosynthetic water and nutrient acquisition/use are minimised. The effects of soil water and nutrient availability on photosynthesis should be stronger as climate-related costs for both resources increase. Two independent datasets of photosynthetic traits, Globamax (1509 species, 288 sites) and Glob13C (3645 species, 594 sites), were used to quantify biophysical and biochemical limitations of photosynthesis and the key variable Ci /Ca (CO2 drawdown during photosynthesis). Climate and soil variables were associated with both datasets. The biochemical photosynthetic capacity was higher on alkaline soils. This effect was strongest at more arid sites, where water unit-costs are presumably higher. Higher values of soil silt and depth increased Ci /Ca , likely by providing greater H2 O supply, alleviating biophysical photosynthetic limitation when soil water is scarce. Climate is important in controlling the optimal balance of H2 O and N costs for photosynthesis, but soil properties change these costs, both directly and indirectly. In total, soil properties modify the climate-demand driven predictions of Ci /Ca by up to 30% at a global scale.


Assuntos
Solo , Água , Carbono , Dióxido de Carbono , Fotossíntese , Folhas de Planta/química
3.
New Phytol ; 217(2): 507-522, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29105765

RESUMO

Contents Summary 507 I. Introduction 507 II. The return on investment approach 508 III. CO2 response spectrum 510 IV. Discussion 516 Acknowledgements 518 References 518 SUMMARY: Land ecosystems sequester on average about a quarter of anthropogenic CO2 emissions. It has been proposed that nitrogen (N) availability will exert an increasingly limiting effect on plants' ability to store additional carbon (C) under rising CO2 , but these mechanisms are not well understood. Here, we review findings from elevated CO2 experiments using a plant economics framework, highlighting how ecosystem responses to elevated CO2 may depend on the costs and benefits of plant interactions with mycorrhizal fungi and symbiotic N-fixing microbes. We found that N-acquisition efficiency is positively correlated with leaf-level photosynthetic capacity and plant growth, and negatively with soil C storage. Plants that associate with ectomycorrhizal fungi and N-fixers may acquire N at a lower cost than plants associated with arbuscular mycorrhizal fungi. However, the additional growth in ectomycorrhizal plants is partly offset by decreases in soil C pools via priming. Collectively, our results indicate that predictive models aimed at quantifying C cycle feedbacks to global change may be improved by treating N as a resource that can be acquired by plants in exchange for energy, with different costs depending on plant interactions with microbial symbionts.


Assuntos
Dióxido de Carbono/metabolismo , Ecossistema , Nitrogênio/metabolismo , Solo/química , Biomassa , Carbono/química
4.
Ecol Lett ; 17(1): 82-91, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24215231

RESUMO

A novel framework is presented for the analysis of ecophysiological field measurements and modelling. The hypothesis 'leaves minimise the summed unit costs of transpiration and carboxylation' predicts leaf-internal/ambient CO2 ratios (ci /ca ) and slopes of maximum carboxylation rate (Vcmax ) or leaf nitrogen (Narea ) vs. stomatal conductance. Analysis of data on woody species from contrasting climates (cold-hot, dry-wet) yielded steeper slopes and lower mean ci /ca ratios at the dry or cold sites than at the wet or hot sites. High atmospheric vapour pressure deficit implies low ci /ca in dry climates. High water viscosity (more costly transport) and low photorespiration (less costly photosynthesis) imply low ci /ca in cold climates. Observed site-mean ci /ca shifts are predicted quantitatively for temperature contrasts (by photorespiration plus viscosity effects) and approximately for aridity contrasts. The theory explains the dependency of ci /ca ratios on temperature and vapour pressure deficit, and observed relationships of leaf δ(13) C and Narea to aridity.


Assuntos
Dióxido de Carbono/metabolismo , Folhas de Planta/metabolismo , Transpiração Vegetal , Plantas/metabolismo , Algoritmos , Nitrogênio/metabolismo
5.
Trends Ecol Evol ; 26(5): 249-59, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21474198

RESUMO

Understanding how species and ecosystems respond to climate change has become a major focus of ecology and conservation biology. Modelling approaches provide important tools for making future projections, but current models of the climate-biosphere interface remain overly simplistic, undermining the credibility of projections. We identify five ways in which substantial advances could be made in the next few years: (i) improving the accessibility and efficiency of biodiversity monitoring data, (ii) quantifying the main determinants of the sensitivity of species to climate change, (iii) incorporating community dynamics into projections of biodiversity responses, (iv) accounting for the influence of evolutionary processes on the response of species to climate change, and (v) improving the biophysical rule sets that define functional groupings of species in global models.


Assuntos
Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais/métodos , Modelos Biológicos , Ecossistema , Variação Genética , Especificidade da Espécie
6.
Science ; 310(5752): 1333-7, 2005 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-16254151

RESUMO

Global change will alter the supply of ecosystem services that are vital for human well-being. To investigate ecosystem service supply during the 21st century, we used a range of ecosystem models and scenarios of climate and land-use change to conduct a Europe-wide assessment. Large changes in climate and land use typically resulted in large changes in ecosystem service supply. Some of these trends may be positive (for example, increases in forest area and productivity) or offer opportunities (for example, "surplus land" for agricultural extensification and bioenergy production). However, many changes increase vulnerability as a result of a decreasing supply of ecosystem services (for example, declining soil fertility, declining water availability, increasing risk of forest fires), especially in the Mediterranean and mountain regions.


Assuntos
Ecossistema , Agricultura , Biodiversidade , Carbono , Clima , Conservação dos Recursos Naturais , Produtos Agrícolas , Meio Ambiente , Europa (Continente) , Efeito Estufa , Humanos , Modelos Estatísticos , Modelos Teóricos , Fatores Socioeconômicos , Árvores/crescimento & desenvolvimento , População Urbana , Abastecimento de Água , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA