Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 109, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735942

RESUMO

BACKGROUND: Social insects vary considerably in their social organization both between and within species. In the California harvester ant, Pogonomyrmex californicus (Buckley 1867), colonies are commonly founded and headed by a single queen (haplometrosis, primary monogyny). However, in some populations in California (USA), unrelated queens cooperate not only during founding (pleometrosis) but also throughout the life of the colony (primary polygyny). The genetic architecture and evolutionary dynamics of this complex social niche polymorphism (haplometrosis vs pleometrosis) have remained unknown. RESULTS: We provide a first analysis of its genomic basis and evolutionary history using population genomics comparing individuals from a haplometrotic population to those from a pleometrotic population. We discovered a recently evolved (< 200 k years), 8-Mb non-recombining region segregating with the observed social niche polymorphism. This region shares several characteristics with supergenes underlying social polymorphisms in other socially polymorphic ant species. However, we also find remarkable differences from previously described social supergenes. Particularly, four additional genomic regions not in linkage with the supergene show signatures of a selective sweep in the pleometrotic population. Within these regions, we find for example genes crucial for epigenetic regulation via histone modification (chameau) and DNA methylation (Dnmt1). CONCLUSIONS: Altogether, our results suggest that social morph in this species is a polygenic trait involving a potential young supergene. Further studies targeting haplo- and pleometrotic individuals from a single population are however required to conclusively resolve whether these genetic differences underlie the alternative social phenotypes or have emerged through genetic drift.


Assuntos
Formigas , Animais , Formigas/genética , Comportamento Social , Genômica , Genoma de Inseto , Polimorfismo Genético , Evolução Biológica , Feminino , California , Evolução Molecular
2.
Sci Rep ; 10(1): 11538, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665692

RESUMO

Colony social organization of multiple Solenopsis fire ant species is determined by a supergene with two haplotypes SB and Sb, which are similar to X/Y sex chromosomes. The ancestral monogyne (single-queen) social form has been associated with homozygous SB/SB queens, while queens in colonies with the derived polygyne (multi-queen) social structure are heterozygous SB/Sb. By comparing 14 Solenopsis invicta genomes and the outgroup S. fugax, we dated the formation of the supergene to 1.1 (0.7-1.6) million years ago, much older than previous estimates, and close to the estimated time of speciation of the two socially polymorphic species S. invicta and S. richteri. We also used 12 S. invicta and S. richteri genomes to compare the evolutionary distances between these species and the distances between the social haplotypes, and found them to be similar. A phylogenetic analysis suggested that the monophyletic Sb clade is more closely related to S. richteri SB haplotypes than to S. invicta SB haplotypes. We conclude that the formation of the supergene occurred concomitantly with the process of speciation of the Solenopsis socially-polymorphic clade, and hypothesize that the Sb variant first arouse in one incipiently-speciating population and then introgressed into the other populations or species.


Assuntos
Formigas/genética , Formigas/fisiologia , Comportamento Animal , Especiação Genética , Comportamento Social , Alelos , Animais , Cruzamentos Genéticos , Genoma de Inseto , Haplótipos , Heterozigoto , Funções Verossimilhança , Modelos Genéticos , Filogenia , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Cromossomo X , Cromossomo Y
3.
Genome Biol Evol ; 10(11): 2947-2960, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239696

RESUMO

Understanding the molecular evolutionary basis of social behavior is a major challenge in evolutionary biology. Social insects evolved a complex language of chemical signals to coordinate thousands of individuals. In the fire ant Solenopsis invicta, chemical signals are involved in the determination of a polymorphic social organization. Single-queen (monogyne) or multiqueen (polygyne) social structure is determined by the "social chromosome," a nonrecombining region containing ∼504 genes with two distinct haplotypes, SB and Sb. Monogyne queens are always SBB, while polygyne queens are always SBb. Workers discriminate monogyne from polygyne queens based on olfactory cues. Here, we took an evolutionary genomics approach to search for candidate genes in the social chromosome that could be responsible for this discrimination. We compared the SB and Sb haplotypes and analyzed the evolutionary rates since their divergence. Notably, we identified a cluster of 23 odorant receptors in the nonrecombining region of the social chromosome that stands out in terms of nonsynonymous changes in both haplotypes. The cluster includes twelve genes formed by recent Solenopsis-specific duplications. We found evidence for positive selection on several tree branches and significant differences between the SB and Sb haplotypes of these genes. The most dramatic difference is the complete deletion of two of these genes in Sb. These results suggest that the evolution of polygyne social organization involved adaptations in olfactory genes and opens the way for functional studies of the molecular mechanisms underlying social behavior.


Assuntos
Formigas/genética , Evolução Biológica , Cromossomos de Insetos , Receptores Odorantes/genética , Olfato/genética , Adaptação Biológica , Animais , Masculino , Polimorfismo Genético , Seleção Genética , Comportamento Social
4.
Genome Res ; 23(8): 1235-47, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23636946

RESUMO

Genomes of eusocial insects code for dramatic examples of phenotypic plasticity and social organization. We compared the genomes of seven ants, the honeybee, and various solitary insects to examine whether eusocial lineages share distinct features of genomic organization. Each ant lineage contains ∼4000 novel genes, but only 64 of these genes are conserved among all seven ants. Many gene families have been expanded in ants, notably those involved in chemical communication (e.g., desaturases and odorant receptors). Alignment of the ant genomes revealed reduced purifying selection compared with Drosophila without significantly reduced synteny. Correspondingly, ant genomes exhibit dramatic divergence of noncoding regulatory elements; however, extant conserved regions are enriched for novel noncoding RNAs and transcription factor-binding sites. Comparison of orthologous gene promoters between eusocial and solitary species revealed significant regulatory evolution in both cis (e.g., Creb) and trans (e.g., fork head) for nearly 2000 genes, many of which exhibit phenotypic plasticity. Our results emphasize that genomic changes can occur remarkably fast in ants, because two recently diverged leaf-cutter ant species exhibit faster accumulation of species-specific genes and greater divergence in regulatory elements compared with other ants or Drosophila. Thus, while the "socio-genomes" of ants and the honeybee are broadly characterized by a pervasive pattern of divergence in gene composition and regulation, they preserve lineage-specific regulatory features linked to eusociality. We propose that changes in gene regulation played a key role in the origins of insect eusociality, whereas changes in gene composition were more relevant for lineage-specific eusocial adaptations.


Assuntos
Formigas/genética , Genoma de Inseto , Animais , Comportamento Animal , Sítios de Ligação , Sequência Conservada , Metilação de DNA , Evolução Molecular , Regulação da Expressão Gênica , Himenópteros/genética , Proteínas de Insetos/genética , MicroRNAs/genética , Modelos Genéticos , Filogenia , Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de DNA , Comportamento Social , Especificidade da Espécie , Sintenia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA