Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(9): 13141-13154, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38240981

RESUMO

Copper (Cu) toxicity is a pressing concern for several soils, especially in organic viticulture. The objective of this work was to assess Cu toxicity on the non-target organism Eisenia fetida, employing both traditional and novel tools for early identification of Cu-induced damages. In addition to traditional tests like avoidance and reproductive toxicity experiments, other tests such as the single cell gel electrophoresis (SCGE) and gut microbiome analysis were evaluated to identify early and more sensitive pollution biomarkers. Four sub-lethal Cu concentrations were studied, and the results showed strong dose-dependent responses by the earthworm avoidance test and the exceeding of habitat threshold limit at the higher Cu doses. An inverse proportionality was observed between reproductive output and soil Cu concentration. Bioaccumulation was not detected in earthworms; soil concentrations of potentially bioavailable Cu were not affected by E. fetida presence or by time. On the contrary, the SCGE test revealed dose-dependent genotoxicity for the 'tail length' parameter already at the second day of Cu exposition. Gut microbiome analysis a modulation of microbial composition, with the most aboundant families being Pectobateriaceae, Comamonadaceae and Microscillaceae. Bacillaceae increased over time and showed adaptability to copper up to 165 mg/kg, while at the highest dose even the sensitive Acetobacteriaceae family was affected. The research provided new insights into the ecotoxicity of Cu sub-lethal doses highlighting both alterations at earthworms' cellular level and changes in their gut microbiota.


Assuntos
Oligoquetos , Poluentes do Solo , Humanos , Animais , Cobre/toxicidade , Cobre/análise , Solo , Oligoquetos/fisiologia , Fazendas , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Testes de Mutagenicidade
2.
Front Plant Sci ; 13: 907349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35941943

RESUMO

Plant Biostimulants (BSs) are a valid supplement to be considered for the integration of conventional fertilization practices. Research in the BS field keeps providing alternative products of various origin, which can be employed in organic and conventional agriculture. In this study, we investigated the biostimulant activity of the eluate obtained as a by-product from the industrial production of lactic acid bacteria on bare agricultural soil. Eluates utilization is in line with the circular economy principle, creating economical value for an industrial waste product. The research focused on the study of physical, chemical, biochemical, and microbiological changes occurring in agricultural soil treated with the biowaste eluate, applied at three different dosages. The final aim was to demonstrate if, and to what extent, the application of the eluate improved soil quality parameters and enhanced the presence of beneficial soil-borne microbial communities. Results indicate that a single application at the two lower dosages does not have a pronounced effect on the soil chemical parameters tested, and neither on the biochemical proprieties. Only the higher dosage applied reported an improvement in the enzymatic activities of ß-glucosidase and urease and in the chemical composition, showing a higher content of total, nitric and ammonia N, total K, and higher humification rate. On the other hand, microbial communities were strongly influenced at all dosages, showing a decrease in the bacterial biodiversity and an increase in the fungal biodiversity. Bioinformatic analysis revealed that some Operative Taxonomic Units (OTUs) promoted by the eluate application, belong to known plant growth promoting microbes. Some other OTUs, negatively influenced were attributed to known plant pathogens, mainly Fusarium spp. Finally, the ecotoxicological parameters were also determined and allowed to establish that no toxic effect occurred upon eluate applications onto soil.

3.
FEMS Microbiol Lett ; 368(12)2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34124758

RESUMO

Environmental DNA is made-up of intracellular (iDNA) and extracellular (eDNA) pools. In soils, eDNA can be present up to 40% and could distort the assessment of living microorganisms. Distribution of microbial community is inconsistent among different size-aggregates, and the persistence and turnover of eDNA are thus uneven. Uneven persistence and distribution of eDNA could lead to heterogeneity in community analysis biases that arise due to eDNA sequences at micro-scale distribution. Here, we investigated the diversity and structure of eDNA and iDNA bacterial communities in bulk soil and different size-aggregates. Significant differences were observed between eDNA and iDNA bacterial diversity and composition. Changes in community composition are more important than the amount of eDNA to assess the biases caused by eDNA in community analysis. Furthermore, variations were also observed in aggregates-levels for eDNA and iDNA community which indicates that colonization pattern of iDNA community and protection of eDNA through absorbance on particle surface within soil-matrix is heterogeneous. Our work provides empirical evidence that eDNA presence could mask the detection of aggregates-level spatial dynamics in soil microbial community and have potential to qualitatively baffle observed live effects of given treatment by adequately muting the actual response dynamics of the soil microbiome.


Assuntos
Bactérias/isolamento & purificação , Microbiota/genética , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Viés , Análise por Conglomerados , DNA Bacteriano/genética , DNA Ambiental/genética , RNA Ribossômico 16S/genética , Solo/química
4.
Front Plant Sci ; 12: 660620, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859664

RESUMO

Plant growth promoting rhizobacteria (PGPR) can display several plant-beneficial properties, including support to plant nutrition, regulation of plant growth, and biocontrol of pests. Mechanisms behind these effects are directly related to the presence and expression of specific genes, and different PGPR strains can be differentiated by the presence of different genes. In this study we reported a comprehensive evaluation of a novel PGPR Klebsiella variicola UC4115 from the field to the lab, and from the lab to the plant. The isolate from tomato field was screened in-vitro for different activities related to plant nutrition and growth regulation as well as for antifungal traits. We performed a functional annotation of genes contributing to plant-beneficial functions previously tested in-vitro. Furthermore, the in-vitro characterization, the whole genome sequencing and annotation of K. variicola UC4115, were compared with the well-known PGPR Azospirillum brasilense strain Sp7. This novel comparative analysis revealed different accumulation of plant-beneficial functions contributing genes, and the presence of different genes that accomplished the same functions. Greenhouse assays on tomato seedlings from BBCH 11-12 to BBCH > 14 were performed under either organic or conventional management. In each of them, three PGPR inoculations (control, K. variicola UC4115, A. brasilense Sp7) were applied at either seed-, root-, and seed plus root level. Results confirmed the PGP potential of K. variicola UC4115; in particular, its high value potential as indole-3-acetic acid producer was observed in increasing of root length density and diameter class length parameters. While, in general, A. brasilense Sp7 had a greater effect on biomass, probably due to its high ability as nitrogen-fixing bacteria. For K. variicola UC4115, the most consistent data were noticed under organic management, with application at seed level. While, A. brasilense Sp7 showed the greatest performance under conventional management. Our data highlight the necessity to tailor the selected PGPR, with the mode of inoculation and the crop-soil combination.

5.
Int J Food Microbiol ; 212: 49-59, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26003605

RESUMO

Natural casings derived from different intestine portions have been used for centuries in the production of fresh and dry-fermented sausages. Here we analysed by means of culture-dependent methods and Illumina high-throughput sequencing of 16S rRNA amplicons the bacterial ecology of hog, cow and ovine casings at different stages of their preparation for sausages production. Several strains of Staphylococcus, Lactobacillus, Bifidobacterium, Vagococcus and Clostridium were counted, isolated and characterised at phylogenetic level. High-throughput sequencing analyses revealed a high bacterial diversity, which differed strongly between casings of different animal species. The technological processes involved in the preparation for casing had also a strong impact on the casings bacterial ecology, with a significant reduction of undesired microorganisms, and an increase in the proportion of lactobacilli and staphylococci. Natural casings were demonstrated to be complex ecological environments, whose role as microbiological inoculants in the production of sausages should not be underestimated.


Assuntos
Biodiversidade , Microbiologia de Alimentos , Bactérias Gram-Positivas/fisiologia , Intestinos/microbiologia , Produtos da Carne/microbiologia , Animais , Bovinos , Feminino , Fermentação , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/isolamento & purificação , Filogenia , RNA Ribossômico 16S/genética , Ovinos/genética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA