Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 891: 164232, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37225094

RESUMO

Chromium (Cr) accumulating in soil caused serious pollution to cultivated land. At present, nano zero-valent iron (nZVI) is considered to be a promising remediation material for Cr-contaminated soil. However, the nZVI impact on the behavior of Cr in the soil-rice system under high natural geological background value remains unknown. We studied the effects of nZVI on the migration and transformation of Cr in paddy soil-rice by pot experiment. Three different doses of nZVI (0, 0.001 % and 0.1 % (w/w)) treatments and one dose of 0.1 % (w/w) nZVI treatment without plant rice were set up. Under continuous flooding conditions, nZVI significantly increased rice biomass compared with the control. At the same time, nZVI significantly promoted the reduction of Fe in the soil, increased the concentration of oxalate Fe and bioavailable Cr, then facilitated the absorption of Cr in rice roots and the transportation to the aboveground part. In addition, the enrichment of Fe(III)-reducing bacteria and sulfate-reducing bacteria in soil provided electron donors for Cr oxidation, which helps to form bioavailable Cr that is easily absorbed by plants. The results of this study can provide scientific basis and technical support for the remediation of Cr -polluted paddy soil with high geological background.


Assuntos
Cromo , Recuperação e Remediação Ambiental , Oryza , Poluentes do Solo , Cromo/análise , Ferro/química , Oryza/química , Gestão de Riscos , Solo , Poluentes do Solo/análise
2.
J Hazard Mater ; 410: 124588, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33229264

RESUMO

Environmentally sound disposal of hyperaccumulator harvests is of critical importance to industrialization of phytoremediation. Herein, transformation behaviors and environmental risk of heavy metals were comprehensively examined during subcritical hydrothermal liquefaction of Sedum plumbizincicola. It is concluded that low temperature liquefaction favored resource recovery of heavy oil and hydrochars in terms of higher energy density, improved carbon sequestration and less energy consumption. Heavy metals were mainly distributed into hydrochars and water soluble phase with less than 10% in heavy oil. All metal elements except As could be accumulated in hydrochars by extending reaction time, whereas more than 96% of As was redistributed into water soluble phase. Prolonged liquefaction time facilitated immobilization of Cd, Cr and As in hydrochars, but fast liquefaction favored Pb stabilization. Liquefaction significantly reduced environmental risk level of Cd, Zn and As, but may mobilize Pb and Mn, especially for Mn to very high risk level at 240 ºC. High temperature with long reaction time tended to inhibit leaching rate of Mn, whereas low liquefaction temperature with short reaction time prevented the leaching of Zn and As from hydrochars. Overall, these findings are essential for downstream upgrading of heavy oil and metals recovery from hydrochars.


Assuntos
Metais Pesados , Sedum , Biodegradação Ambiental , Metais Pesados/análise , Metais Pesados/toxicidade , Medição de Risco , Água
3.
J Hazard Mater ; 400: 123289, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-32947698

RESUMO

China exemplifies the serious and widespread soil heavy metal pollution generated by mining activities. A total of 420 soil samples from 58 metal mines was collected across Eastern China. Total and available heavy metal concentrations, soil physico-chemical properties and geological indices were determined and collected. Risk assessments were applied, and a successive multivariate statistical analysis was carried out to provide insights into the heavy metal contamination characteristics and environmental drivers of heavy metal availability. The results suggested that although the degrees of pollution varied between different mine types, in general they had similar contamination characteristics in different regions. The major pollutants for total concentrations were found to be Cd and As in south and northeast China. The availability of Zn and Cd is relatively higher in south China. Soil physico-chemical properties had major effect on metal availability where soil pH was the most important factor. On a continental scale, soil pH and EC were influenced by the local climate patterns which could further impact on heavy metal availability. Enlightened by this study, future remediation strategies should be focused on steadily increasing soil pH, and building adaptable and sustainable ecological system to maintain low metal availabilities in mine site soils.

4.
Sheng Wu Gong Cheng Xue Bao ; 36(3): 416-425, 2020 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-32237536

RESUMO

Phytoremediation is one of the important methods for restoring heavy-metal contaminated soils. Using high-biomass economic plants to restore heavy-metal contaminated soils can have both ecological and economic benefits, with great application prospects. Based on the analysis of current situation and existing problems of phytoremediation, we propose the advantages of high-biomass economic plants in contaminated soil remediation, and summarize the recent advances and mechanisms involved in absorbing heavy metals in high-biomass economic plants. Furthermore, the possible methods for improving the remediation efficiency of high-biomass economic plants are also discussed, to provide insights for improving the economic benefits of phytoremediation and promoting its widespread application in the future.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Biomassa , Metais Pesados/metabolismo , Pesquisa/tendências , Solo
5.
Environ Sci Technol ; 54(5): 3039-3049, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32022549

RESUMO

Due to the increasing need for sustainable energy and environmental quality in urban areas, the combination of aquifer thermal energy storage (ATES) and in situ bioremediation (ISB) has drawn much attention as it can deliver an integrated contribution to fulfill both demands. Yet, little is known about the overall environmental impacts of ATES-ISB. Hence, we applied a life-cycle assessment (LCA) to evaluate the environmental performance of ATES-ISB, which is also compared with the conventional heating and cooling system plus ISB alone (CHC + ISB). Energy supply via electricity is revealed as the primary cause of the environmental impacts, contributing 61.26% impacts of ATES-ISB and 72.91% impacts of CHC + ISB. Specifically, electricity is responsible for over 95% of water use, global warming potential, acidification potential, and respiratory inorganics, whereas the production of the biological medium for bioremediation causes more than 85% of the eco- and human toxicity impacts in both cases. The overall environmental impact of ATES-ISB is two times smaller than that of CHC + ISB. Sensitivity analysis confirms the importance of electricity consumption and electron donor production to the environmental impacts in both energy supply and bioremediation. Thus, future studies and practical applications seeking possible optimization of the environmental performances of ATES-ISB are recommended to focus more on these two essential elements, e.g., electricity and electron donor, and their related parameters. With the comprehensive LCA, insight is obtained for better characterizing the crucial factors as well as the relevant direction for future optimization research of the ATES-ISB system.


Assuntos
Água Subterrânea , Compostos Orgânicos Voláteis , Biodegradação Ambiental , Eletricidade , Temperatura Alta , Humanos
6.
Bull Environ Contam Toxicol ; 103(4): 565-570, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31410500

RESUMO

Nowadays rare earth elements (REEs) are widely applied in high-technology and clean energy products, but their environmental risks are still largely unknown. To estimate the ecological risk of REEs, soil samples were collected from REE mine tailings with and without phytoremediation. The results showed that the tailings had rather low organic matter and high total REE concentrations, up to 808.5 mg/kg. The 10% effective concentration (EC10) of neodymium (Nd) and yttrium (Y) were calculated based on the toxicity tests of seed germination and root growth. For both wheat and mung bean, the EC10 of Nd and Y in soils were in the range of 1053.1-1300.1 mg/kg. The average hazard quotient of mine tailing soil without phytoremediation was higher than that with phytoremediation. All the hazard quotient of Nd and Y were less than 1, indicating that Nd or Y alone was unlikely to cause adverse ecological effects. Given to the coexistence of REEs on mine sites, the ecological risk of REE mixture could be potentially high towards local soil environments, even for soils with phytoremdiation.


Assuntos
Mineração , Neodímio/análise , Poluentes do Solo/análise , Solo/química , Ítrio/análise , Biodegradação Ambiental , China , Medição de Risco , Triticum/química , Triticum/crescimento & desenvolvimento , Vigna/química , Vigna/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA