Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Genet Med ; 26(5): 101082, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38281098

RESUMO

PURPOSE: To assess the likely pathogenic/pathogenic (LP/P) variants rates in Mendelian dementia genes and the moderate-to-strong risk factors rates in patients with Alzheimer disease (AD). METHODS: We included 700 patients in a prospective study and performed exome sequencing. A panel of 28 Mendelian and 6 risk-factor genes was interpreted and returned to patients. We built a framework for risk variant interpretation and risk gradation and assessed the detection rates among early-onset AD (EOAD, age of onset (AOO) ≤65 years, n = 608) depending on AOO and pedigree structure and late-onset AD (66 < AOO < 75, n = 92). RESULTS: Twenty-one patients carried a LP/P variant in a Mendelian gene (all with EOAD, 3.4%), 20 of 21 affected APP, PSEN1, or PSEN2. LP/P variant detection rates in EOAD ranged from 1.7% to 11.6% based on AOO and pedigree structure. Risk factors were found in 69.5% of the remaining 679 patients, including 83 (12.2%) being heterozygotes for rare risk variants, in decreasing order of frequency, in TREM2, ABCA7, ATP8B4, SORL1, and ABCA1, including 5 heterozygotes for multiple rare risk variants, suggesting non-monogenic inheritance, even in some autosomal-dominant-like pedigrees. CONCLUSION: We suggest that genetic screening should be proposed to all EOAD patients and should no longer be prioritized based on pedigree structure.


Assuntos
Doença de Alzheimer , Sequenciamento do Exoma , Predisposição Genética para Doença , Testes Genéticos , Glicoproteínas de Membrana , Presenilina-2 , Receptores Imunológicos , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/diagnóstico , Testes Genéticos/métodos , Feminino , Masculino , Idoso , Fatores de Risco , Estudos Prospectivos , Pessoa de Meia-Idade , Presenilina-2/genética , Presenilina-1/genética , Linhagem , Idade de Início , Precursor de Proteína beta-Amiloide/genética , Idoso de 80 Anos ou mais
2.
Transl Psychiatry ; 10(1): 77, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094338

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a strong genetic component whose knowledge evolves quickly. Next-generation sequencing is the only effective technology to deal with the high genetic heterogeneity of ASD in a clinical setting. However, rigorous criteria to classify rare genetic variants conferring ASD susceptibility are currently lacking. We have performed whole-exome sequencing to identify both nucleotide variants and copy number variants (CNVs) in 253 ASD patients, including 68 patients with intellectual disability (ID) and 90 diagnosed as Asperger syndrome. Using explicit criteria to classify both susceptibility genes and susceptibility variants we prioritized 217 genes belonging to the following categories: syndromic genes, genes with an excess of de novo protein truncating variants and genes targeted by rare CNVs. We obtained a susceptibility variant detection rate of 19.7% (95% CI: [15-25.2%]). The rate for CNVs was 7.1% (95% CI: [4.3-11%]) and 12.6% (95% CI: [8.8-17.4%]) for nucleotide variants. The highest rate (30.1%, 95% CI: [20.2-43.2%]) was obtained in the ASD + ID subgroup. A strong contributor for at risk nucleotide variants was the recently identified set of genes (n = 81) harboring an excess of de novo protein truncating variants. Since there is currently no evidence that the genes targeted here are necessary and sufficient to cause ASD, we recommend to avoid the term "causative of ASD" when delivering the information about a variant to a family and to use instead the term "genetic susceptibility factor contributing to ASD".


Assuntos
Transtorno do Espectro Autista , Transtorno do Espectro Autista/genética , Variações do Número de Cópias de DNA , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sequenciamento do Exoma
3.
Clin Chem ; 65(9): 1153-1160, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31292136

RESUMO

BACKGROUND: Rare copy number variations (CNVs) are a major cause of genetic diseases. Simple targeted methods are required for their confirmation and segregation analysis. We developed a simple and universal CNV assay based on digital PCR (dPCR) and universal locked nucleic acid (LNA) hydrolysis probes. METHODS: We analyzed the mapping of the 90 LNA hydrolysis probes from the Roche Universal ProbeLibrary (UPL). For each CNV, selection of the optimal primers and LNA probe was almost automated; probes were reused across assays and each dPCR assay included the CNV amplicon and a reference amplicon. We assessed the assay performance on 93 small and large CNVs and performed a comparative cost-efficiency analysis. RESULTS: UPL-LNA probes presented nearly 20000000 occurrences on the human genome and were homogeneously distributed with a mean interval of 156 bp. The assay accurately detected all the 93 CNVs, except one (<200 bp), with coefficient of variation <10%. The assay was more cost-efficient than all the other methods. CONCLUSIONS: The universal dPCR CNV assay is simple, robust, and cost-efficient because it combines a straightforward design allowed by universal probes and end point PCR, the advantages of a relative quantification of the target to the reference within the same reaction, and the high flexibility of the LNA hydrolysis probes. This method should be a useful tool for genomic medicine, which requires simple methods for the interpretation and segregation analysis of genomic variations.


Assuntos
Variações do Número de Cópias de DNA , DNA/análise , Reação em Cadeia da Polimerase/métodos , Sequência de Bases , DNA/genética , Genoma Humano , Humanos , Hidrólise , Masculino , Oligonucleotídeos/química , Reação em Cadeia da Polimerase/economia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA