Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 28(8): 1709-1715, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28401432

RESUMO

Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) has proven to be a quick, robust, and label-free tool to produce two-dimensional (2D) ion-density maps representing the distribution of a variety of analytes across a tissue section of interest. In addition, three-dimensional (3D) imaging mass spectrometry workflows have been developed that are capable of visualizing these same analytes throughout an entire volume of a tissue rather than a single cross-section. Until recently, the use of Fourier transform ion cyclotron resonance (FTICR) mass spectrometers for 3D volume reconstruction has been impractical due to software limitations, such as inadequate capacity to manipulate the extremely large data files produced during an imaging experiment. Fortunately with recent software and hardware advancements, 3D reconstruction from MALDI FTICR IMS datasets is now feasible. Here we describe the first proof of principle study for a 3D volume reconstruction of an entire mouse lung using data collected on a FTICR mass spectrometer. Each lung tissue section was analyzed with high mass resolution and mass accuracy, and considered as an independent dataset. Each subsequent lung section image, or lung dataset, was then co-registered to its adjacent section to reconstruct a 3D volume. Volumes representing various endogenous lipid species were constructed, including sphingolipids and phosphatidylcholines (PC), and species confirmation was performed with on-tissue collision induced dissociation (CID). Graphical Abstract ᅟ.


Assuntos
Imageamento Tridimensional/métodos , Pulmão/anatomia & histologia , Pulmão/ultraestrutura , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Ciclotrons , Análise de Fourier , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Anatômicos
2.
Drug Metab Dispos ; 42(7): 1110-6, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24754926

RESUMO

Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults, and the limited available treatment options have not meaningfully impacted patient survival in the past decades. Such poor outcomes can be at least partly attributed to the inability of most drugs tested to cross the blood-brain barrier and reach all areas of the glioma. The objectives of these studies were to visualize and compare by matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry the brain and tumor distribution of the phosphatidylinositol 3-kinase (PI3K) inhibitors pictilisib (GDC-0941, 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine) and GNE-317 [5-(6-(3-methoxyoxetan-3-yl)-7-methyl-4-morpholinothieno[3,2-d]pyrimidin-2-yl)pyrimidin-2-amine] in U87 and GS2 orthotopic models of GBM, models that exhibit differing blood-brain barrier characteristics. Following administration to tumor-bearing mice, pictilisib was readily detected within tumors of the contrast-enhancing U87 model whereas it was not located in tumors of the nonenhancing GS2 model. In both GBM models, pictilisib was not detected in the healthy brain. In contrast, GNE-317 was uniformly distributed throughout the brain in the U87 and GS2 models. MALDI imaging revealed also that the pictilisib signal varied regionally by up to 6-fold within the U87 tumors whereas GNE-317 intratumor levels were more homogeneous. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analyses of the nontumored half of the brain showed pictilisib had brain-to-plasma ratios lower than 0.03 whereas they were greater than 1 for GNE-317, in agreement with their brain penetration properties. These results in orthotopic models representing either the contrast-enhancing or invasive areas of GBM clearly demonstrate the need for whole-brain distribution to potentially achieve long-term efficacy in GBM.


Assuntos
Neoplasias Encefálicas/metabolismo , Inibidores Enzimáticos/farmacocinética , Glioblastoma/metabolismo , Indazóis/farmacocinética , Inibidores de Fosfoinositídeo-3 Quinase , Pirimidinas/farmacocinética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sulfonamidas/farmacocinética , Tiofenos/farmacocinética , Animais , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Indazóis/farmacologia , Camundongos , Camundongos Nus , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA