Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Vet Sci ; 10: 1160486, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252384

RESUMO

The milk, meat, skins, and draft power of domestic water buffalo (Bubalus bubalis) provide substantial contributions to the global agricultural economy. The world's water buffalo population is primarily found in Asia, and the buffalo supports more people per capita than any other livestock species. For evaluating the workflow, output rate, and completeness of transcriptome assemblies within and between reference-free (RF) de novo transcriptome and reference-based (RB) datasets, abundant bioinformatics studies have been carried out to date. However, comprehensive documentation of the degree of consistency and variability of the data produced by comparing gene expression levels using these two separate techniques is lacking. In the present study, we assessed the variations in the number of differentially expressed genes (DEGs) attained with RF and RB approaches. In light of this, we conducted a study to identify, annotate, and analyze the genes associated with four economically important traits of buffalo, viz., milk volume, age at first calving, post-partum cyclicity, and feed conversion efficiency. A total of 14,201 and 279 DEGs were identified in RF and RB assemblies. Gene ontology (GO) terms associated with the identified genes were allocated to traits under study. Identified genes improve the knowledge of the underlying mechanism of trait expression in water buffalo which may support improved breeding plans for higher productivity. The empirical findings of this study using RNA-seq data-based assembly may improve the understanding of genetic diversity in relation to buffalo productivity and provide important contributions to answer biological issues regarding the transcriptome of non-model organisms.

2.
Front Genet ; 13: 809741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480326

RESUMO

Water buffalo (Bubalus bubalis), belonging to the Bovidae family, is an economically important animal as it is the major source of milk, meat, and drought in numerous countries. It is mainly distributed in tropical and subtropical regions with a global population of approximately 202 million. The advent of low cost and rapid sequencing technologies has opened a new vista for global buffalo researchers. In this study, we utilized the genomic data of five commercially important buffalo breeds, distributed globally, namely, Mediterranean, Egyptian, Bangladesh, Jaffrarabadi, and Murrah. Since there is no whole-genome sequence analysis of these five distinct buffalo breeds, which represent a highly diverse ecosystem, we made an attempt for the same. We report the first comprehensive, holistic, and user-friendly web genomic resource of buffalo (BuffGR) accessible at http://backlin.cabgrid.res.in/buffgr/, that catalogues 6028881 SNPs and 613403 InDels extracted from a set of 31 buffalo tissues. We found a total of 7727122 SNPs and 634124 InDels distributed in four breeds of buffalo (Murrah, Bangladesh, Jaffarabadi, and Egyptian) with reference to the Mediterranean breed. It also houses 4504691 SSR markers from all the breeds along with 1458 unique circRNAs, 37712 lncRNAs, and 938 miRNAs. This comprehensive web resource can be widely used by buffalo researchers across the globe for use of markers in marker trait association, genetic diversity among the different breeds of buffalo, use of ncRNAs as regulatory molecules, post-transcriptional regulations, and role in various diseases/stresses. These SNPs and InDelscan also be used as biomarkers to address adulteration and traceability. This resource can also be useful in buffalo improvement programs and disease/breed management.

3.
IEEE/ACM Trans Comput Biol Bioinform ; 18(4): 1361-1368, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31494554

RESUMO

Alignment and comparison of protein 3D structures is an important and fundamental task in structural biology to study evolutionary, functional and structural relatedness among proteins. Since two decades, the research on protein structure alignment has been taken up on priority and numbers of research articles are being published. There are incremental advances over previous efforts, and still these methods continue to improve over the time and still this is an open problem in structural biology. A novel methodology has been developed for comparing protein 3D structure by employing conversion of pair of protein 3D structures into 2D graphs (undirected weighted graph), partitioning of 2D graphs into sub-graphs, matching sub-graphs with main graphs and finally these sub-graphs matches calculates similarity between the pair of proteins. The proposed method has been implemented in MATLAB and R Package. The performance of the developed methodology is tested with four existing best methods such as CE, jFATCAT, TM_Align and Dali on 100 proteins benchmark dataset with SCOP database. The proposed method is efficient in terms of time complexity, accuracy, grouping of proteins in relevant structural groups and provides additional information towards non-bonded interactions and sub-graphs indicates the dominance of secondary structure.


Assuntos
Biologia Computacional/métodos , Imageamento Tridimensional , Modelos Moleculares , Conformação Proteica , Proteínas/química , Algoritmos , Cadeias de Markov
4.
Physiol Plant ; 172(2): 669-683, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33305409

RESUMO

Black pepper (Piper nigrum L.; 2n = 52; Piperaceae), the king of spices, is a perennial, trailing woody flowering vine and has global importance with widespread dietary, medicinal, and preservative uses. It is an economically important germplasm cultivated for its fruit and the major cash crop in >30 tropical countries. Crop production is mainly affected by drought stress. The present study deals with the candidate gene identification from drought-affected black pepper leaf transcriptome generated by Illumina Hiseq2000. It also aims to mine putative molecular markers (namely SSRs, SNPs, and InDels) and generate primers for them. The identification of transcription factors and pathways involved in drought tolerance is also reported here. De novo transcriptome assembly was performed with trinity assembler. In total, 4914 differential expressed genes, 2110 transcriptional factors, 786 domains and 1137 families, 20,124 putative SSR markers, and 259,236 variants were identified. At2g30105 (unidentified gene containing leucine-rich repeats and ubiquitin-like domain), serine threonine protein kinase, Mitogen-activated protein kinase, Nucleotide Binding Site-Leucine Rich Repeat, Myeloblastosis-related proteins, basic helix-loop-helix are all found upregulated and are reported to be associated with plant tolerance against drought condition. All these information are catalogued in the Black Pepper Drought Transcriptome Database (BPDRTDb), freely accessible for academic use at http://webtom.cabgrid.res.in/bpdrtdb/. This database is a good foundation for the genetic improvement of pepper plants, breeding programmes, and mapping population of this crop. Putative markers can also be a reliable genomic resource to develop drought-tolerant variety for better black pepper productivity.


Assuntos
Piper nigrum , Secas , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Piper nigrum/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA