RESUMO
The mnemonic discrimination task (MDT) is a widely used cognitive assessment tool. Performance in this task is believed to indicate an age-related deficit in episodic memory stemming from a decreased ability to pattern-separate among similar experiences. However, cognitive processes other than memory ability might impact task performance. In this study, we investigated whether nonmnemonic decision-making processes contribute to the age-related deficit in the MDT. We applied a hierarchical Bayesian version of the Ratcliff diffusion model to the MDT performance of 26 younger and 31 cognitively normal older adults. It allowed us to decompose decision behavior in the MDT into different underlying cognitive processes, represented by specific model parameters. Model parameters were compared between groups, and differences were evaluated using the Bayes factor. Our results suggest that the age-related decline in MDT performance indicates a predominantly mnemonic deficit rather than differences in nonmnemonic decision-making processes. In addition, this mnemonic deficit might also involve a slowing in processes related to encoding and retrieval strategies, which are relevant for successful memory as well. These findings help to better understand what cognitive processes contribute to the age-related decline in MDT performance and may help to improve the diagnostic value of this popular task.
Assuntos
Memória Episódica , Teorema de Bayes , Técnicas de Apoio para a DecisãoRESUMO
I evaluated three models for the representation of numbers in memory. These were integrated with the diffusion decision model to explain accuracy and response time (RT) data from a recognition memory experiment in which the stimuli were two-digit numbers. The integrated models accounted for distance/confusability effects: when a test number was numerically close to a studied number, accuracy was lower and RTs were longer than when a test number was numerically far from a studied number. For two of the models, the representations of numbers are distributed over number (with Gaussian or exponential distributions) and the overlap between the distributions of a studied number and a test number provides the evidence (drift rate) on which a decision is made. For the third, the exponential gradient model, drift rate is an exponential function of the numerical distance between studied and test numbers. The exponential gradient model fit the data slightly better than the two overlap models. Monte Carlo simulations showed that the variability in the important parameter estimates from fitting data collected over 30-40 min is smaller than the variability among individuals, allowing differences among individuals to be studied. A second experiment compared number memory and number discrimination tasks and results showed different distance effects. Number memory had an exponential-like distance-effect and number discrimination had a linear function which shows radically different representations drive the two tasks.
Assuntos
Reconhecimento Psicológico , Humanos , Método de Monte Carlo , Tempo de Reação/fisiologiaRESUMO
We investigated aging effects in a task-switch paradigm with degraded stimuli administered to college students, 61-74 year olds, and 75-89 year olds. We studied switch costs (the performance difference between task-repeat and task-switch trials) in terms of accuracy and mean reaction times (RTs). Previous aging research focused on switch costs in terms of mean RTs (with accuracy at ceiling). Our results emphasize the importance of distinguishing between switch costs indexed by accuracy and by RTs because these measures lead to different interpretations. We used the Diffusion Decision Model (DDM; Ratcliff, 1978) to study the cognitive components contributing to switch costs. The DDM decomposed the cognitive process of task switching into multiple components. Two parameters of the model, the quality of evidence on which decisions were based (drift rate) and the duration of processes outside the decision process (nondecision time component), indexed different sources of switch costs. We found that older participants had larger switch costs indexed by nondecision time component than younger participants. This result suggests age-related deficits in preparatory cognitive processes. We also found group differences in switch costs indexed by drift rate for switch trials with high stimulus interference (stimuli with features relevant for both tasks). This result suggests that older participants have less effective cognitive processes involved in resolving interference. Our findings show that age-related effects in separate components of switch costs can be studied with the DDM. Our results demonstrate the utility of using discrimination tasks with degraded stimuli in conjunction with model-based analyses. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Assuntos
Envelhecimento/fisiologia , Tomada de Decisões , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , EstudantesRESUMO
There is growing interest in diffusion models to represent the cognitive and neural processes of speeded decision making. Sequential-sampling models like the diffusion model have a long history in psychology. They view decision making as a process of noisy accumulation of evidence from a stimulus. The standard model assumes that evidence accumulates at a constant rate during the second or two it takes to make a decision. This process can be linked to the behaviors of populations of neurons and to theories of optimality. Diffusion models have been used successfully in a range of cognitive tasks and as psychometric tools in clinical research to examine individual differences. In this review, we relate the models to both earlier and more recent research in psychology.
Assuntos
Ondas Encefálicas/fisiologia , Cognição/fisiologia , Tomada de Decisões/fisiologia , Modelos Psicológicos , Eletroencefalografia , Humanos , Imageamento por Ressonância MagnéticaRESUMO
The dominant theoretical paradigm in explaining decision making throughout both neuroscience and cognitive science is known as "evidence accumulation"--The core idea being that decisions are reached by a gradual accumulation of noisy information. Although this notion has been supported by hundreds of experiments over decades of study, a recent theory proposes that the fundamental assumption of evidence accumulation requires revision. The "urgency gating" model assumes decisions are made without accumulating evidence, using only moment-by-moment information. Under this assumption, the successful history of evidence accumulation models is explained by asserting that the two models are mathematically identical in standard experimental procedures. We demonstrate that this proof of equivalence is incorrect, and that the models are not identical, even when both models are augmented with realistic extra assumptions. We also demonstrate that the two models can be perfectly distinguished in realistic simulated experimental designs, and in two real data sets; the evidence accumulation model provided the best account for one data set, and the urgency gating model for the other. A positive outcome is that the opposing modeling approaches can be fruitfully investigated without wholesale change to the standard experimental paradigms. We conclude that future research must establish whether the urgency gating model enjoys the same empirical support in the standard experimental paradigms that evidence accumulation models have gathered over decades of study.
Assuntos
Tomada de Decisões , Modelos Psicológicos , Animais , Simulação por Computador , Movimentos Oculares , Humanos , Macaca mulatta , Método de Monte Carlo , Percepção de Movimento , Tempo de ReaçãoRESUMO
We evaluated age-related differences in the optimality of decision boundary settings in a diffusion model analysis. In the model, the width of the decision boundary represents the amount of evidence that must accumulate in favor of a response alternative before a decision is made. Wide boundaries lead to slow but accurate responding, and narrow boundaries lead to fast but inaccurate responding. There is a single value of boundary separation that produces the most correct answers in a given period of time, and we refer to this value as the reward rate optimal boundary (RROB). We consistently found across a variety of decision tasks that older adults used boundaries that were much wider than the RROB value. Young adults used boundaries that were closer to the RROB value, although age differences in optimality were smaller with instructions emphasizing speed than with instructions emphasizing accuracy. Young adults adjusted their boundary settings to more closely approach the RROB value when they were provided with accuracy feedback and extensive practice. Older participants showed no evidence of making boundary adjustments in response to feedback or task practice, and they consistently used boundary separation values that produced accuracy levels that were near asymptote. Our results suggest that young adults attempt to balance speed and accuracy to achieve the most correct answers per unit time, whereas older adultts attempt to minimize errors even if they must respond quite slowly to do so.
Assuntos
Envelhecimento/psicologia , Atenção , Teoria da Decisão , Tempo de Reação , Adulto , Sensibilidades de Contraste , Discriminação Psicológica , Retroalimentação Psicológica , Feminino , Humanos , Julgamento , Masculino , Pessoa de Meia-Idade , Reconhecimento Visual de Modelos , Reconhecimento Psicológico , RecompensaRESUMO
A new model for confidence judgments in recognition memory is presented. In the model, the match between a single test item and memory produces a distribution of evidence, with better matches corresponding to distributions with higher means. On this match dimension, confidence criteria are placed, and the areas between the criteria under the distribution are used as drift rates to drive racing Ornstein-Uhlenbeck diffusion processes. The model is fit to confidence judgments and quantile response times from two recognition memory experiments that manipulated word frequency and speed versus accuracy emphasis. The model and data show that the standard signal detection interpretation of z-transformed receiver operating characteristic (z-ROC) functions is wrong. The model also explains sequential effects in which the slope of the z-ROC function changes by about 10% as a function of the prior response in the test list.
Assuntos
Aprendizagem por Associação , Julgamento , Rememoração Mental , Modelos Estatísticos , Aprendizagem por Associação de Pares , Tempo de Reação , Reconhecimento Psicológico , Detecção de Sinal Psicológico , Tomada de Decisões , Humanos , Método de Monte Carlo , Desempenho Psicomotor , Curva ROCRESUMO
The diffusion decision model allows detailed explanations of behavior in two-choice discrimination tasks. In this article, the model is reviewed to show how it translates behavioral data-accuracy, mean response times, and response time distributions-into components of cognitive processing. Three experiments are used to illustrate experimental manipulations of three components: stimulus difficulty affects the quality of information on which a decision is based; instructions emphasizing either speed or accuracy affect the criterial amounts of information that a subject requires before initiating a response; and the relative proportions of the two stimuli affect biases in drift rate and starting point. The experiments also illustrate the strong constraints that ensure the model is empirically testable and potentially falsifiable. The broad range of applications of the model is also reviewed, including research in the domains of aging and neurophysiology.