Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Drug Metab Lett ; 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35293300

RESUMO

BACKGROUND: Identification of clinical drug-drug interaction (DDI) risk is an important aspect of drug discovery and development owing to poly-pharmacy in present-day clinical therapy. Drug metabolizing enzymes (DME) plays important role in the efficacy and safety of drug candidates. Hence evaluation of a New Chemical Entity (NCE) as a victim or perpetrator is very crucial for DDI risk mitigation. ZY12201 (2-((2-(4-(1H-imidazol-1-yl) phenoxy) ethyl) thio)-5-(2-(3, 4- dimethoxy phenyl) propane-2-yl)-1-(4-fluorophenyl)-1H-imidazole) is a novel and potent Takeda-G-protein-receptor-5 (TGR-5) agonist. ZY12201 was evaluated in-vitro to investigate the DDI liabilities. OBJECTIVE: The key objective was to evaluate the CYP inhibition potential of ZY12201 for an opportunity to use it as a tool compound for pan CYP inhibition activities. METHOD: In-vitro drug metabolizing enzymes (DME) inhibition potential of ZY12201 was evaluated against major CYP isoforms (1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4/5), aldehyde oxidase (AO), monoamine oxidase (MAO), and flavin-containing monooxygenase (FMO in human liver cytosol/mitochondrial preparation/ microsomes using probe substrates and Liquid Chromatography with tandem mass spectrometry (LC-MS-MS) method. RESULTS: The study conducted on ZY12201 at 100 µM ZY12201 was found to reduce the metabolism of vanillin (AO probe substrate), tryptamine (MAO probe substrate), and benzydamine (FMO probe substrate) by 49.2%, 14.7%, and 34.9%, respectively. ZY12201 Ki values were 0.38, 0.25, 0.07, 0.01, 0.06, 0.02, 7.13, 0.03 and 0.003 µM for CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4/5 (substrate: testosterone) and CYP3A4/5 (substrate: midazolam), respectively. Time-dependant CYP inhibition potential of ZY12201 was assessed against CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4/5 and no apparent IC50 shift was observed. CONCLUSIONS: ZY12201, at 100 µM concentration showed low inhibition potential of AO, MAO, and FMO. ZY12201 was found as a potent inhibitor of CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4/5 while moderately inhibits to CYP2E1. Inhibition of CYP1A2, CYP2B6, CYP2C19, and CYP2E1 by ZY12201 was competitive, while inhibition of CYP2C8, CYP2C9, CYP2D6, and CYP3A4/5 was of mixed-mode. ZY12201 is a non-time-dependent inhibitor of CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4/5. In summary, the reported Ki values unequivocally support that ZY12201 has a high potential to inhibit all major CYP isoforms. ZY12201 can be effectively used as a tool compound for in-vitro evaluation of CYP-based metabolic contribution to total drug clearance in the lead optimization stage of Drug Discovery Research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA