Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
NanoImpact ; 25: 100366, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35559874

RESUMO

The risk of each nanoform (NF) of the same substance cannot be assumed to be the same, as they may vary in their physicochemical characteristics, exposure and hazard. However, neither can we justify a need for more animal testing and resources to test every NF individually. To reduce the need to test all NFs, (regulatory) information requirements may be fulfilled by grouping approaches. For such grouping to be acceptable, it is important to demonstrate similarities in physicochemical properties, toxicokinetic behaviour, and (eco)toxicological behaviour. The GRACIOUS Framework supports the grouping of NFs, by identifying suitable grouping hypotheses that describe the key similarities between different NFs. The Framework then supports the user to gather the evidence required to test these hypotheses and to subsequently assess the similarity of the NFs within the proposed group. The evidence needed to support a hypothesis is gathered by an Integrated Approach to Testing and Assessment (IATA), designed as decision trees constructed of decision nodes. Each decision node asks the questions and provides the methods needed to obtain the most relevant information. This White paper outlines existing and novel methods to assess similarity of the data generated for each decision node, either via a pairwise analysis conducted property-by-property, or by assessing multiple decision nodes simultaneously via a multidimensional analysis. For the pairwise comparison conducted property-by-property we included in this White paper: The x-fold, Bayesian and Arsinh-OWA distance algorithms performed comparably in the scoring of similarity between NF pairs. The Euclidean distance was also useful, but only with proper data transformation. The x-fold method does not standardize data, and thus produces skewed histograms, but has the advantage that it can be implemented without programming knowhow. A range of multidimensional evaluations, using for example dendrogram clustering approaches, were also investigated. Multidimensional distance metrics were demonstrated to be difficult to use in a regulatory context, but from a scientific perspective were found to offer unexpected insights into the overall similarity of very different materials. In conclusion, for regulatory purposes, a property-by-property evaluation of the data matrix is recommended to substantiate grouping, while the multidimensional approaches are considered to be tools of discovery rather than regulatory methods.


Assuntos
Nanoestruturas , Animais , Teorema de Bayes , Nanoestruturas/química , Medição de Risco/métodos
2.
Nanotoxicology ; 16(2): 195-216, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35506346

RESUMO

This manuscript proposes a methodology to assess the completeness and quality of physicochemical and hazard datasets for risk assessment purposes. The approach is also specifically applicable to similarity assessment as a basis for grouping of (nanoforms of) chemical substances as well as for classification of the substances according to the Classification, Labeling and Packaging regulation. The unique goal of this approach is to assess data quality in such a way that all the steps are automatized, thus reducing reliance on expert judgment. The analysis starts from available (meta)data as provided in the data entry templates developed by the NanoSafety community and used for import into the eNanoMapper database. The methodology is implemented in the templates as a traffic light system-the providers of the data can see in real time the completeness scores calculated by the system for their datasets in green, yellow, or red. This is an interactive feedback feature that is intended to provide an incentive for anyone inserting data into the database to deliver more complete and higher quality datasets. The users of the data can also see this information both in the data entry templates and on the database interface, which enables them to select better datasets for their assessments. The proposed methodology has been partially implemented in the eNanoMapper database and in a Weight of Evidence approach for the regulatory classification of nanomaterials. It was fully implemented in a publicly available online R tool.


Assuntos
Confiabilidade dos Dados , Nanoestruturas , Bases de Dados Factuais , Nanoestruturas/química , Medição de Risco/métodos
3.
Regul Toxicol Pharmacol ; 128: 105093, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34864125

RESUMO

The European Commission's Green Deal is a major policy initiative aiming to achieve a climate-neutral, zero-pollution, sustainable, circular and inclusive economy, driving both the New Industrial Strategy for Europe and the Chemicals Strategy for Sustainability. Innovative materials can help to reach these policy goals, but they need to be safe and sustainable themselves. Thus, one aim is to shift the development of chemicals to Safe- and Sustainable-by-Design, and define a new systems approach and criteria for sustainability to achieve this. An online workshop was organised in September 2020 by the Joint Research Centre and the Directorate-General Research and Innovation of the European Commission, with participants from academia, non-governmental organisations, industry and regulatory bodies. The aims were to introduce the concept of Safe- and Sustainable-by-Design, to identify industrial and regulatory challenges in achieving safer and more sustainable Smart Nanomaterials as an example of innovative materials, and to deliver recommendations for directions and actions necessary to meet these challenges. The following needs were identified: (i) an agreed terminology, (ii) a common understanding of the principles of Safe- and Sustainable-by-Design, iii) criteria, assessment tools and incentives to achieve a transition from Safe-by-Design to Safe- and Sustainable-by-Design, and (iv) preparedness of regulators and legislation for innovative chemicals/nanomaterials. This paper presents the authors' view on the state of the art as well as the needs for future activities, based on discussions at the workshop and further considerations. The case of Smart Nanomaterials is used to illustrate the Safe- and Sustainable-by-Design concept and challenges for its implementation. Most of the considerations can be extended to other advanced materials and to chemicals and products in general.


Assuntos
Química/normas , Meio Ambiente , Regulamentação Governamental , Nanoestruturas/química , Nanotecnologia/organização & administração , Desenvolvimento Sustentável/tendências , União Europeia , Humanos , Nanotecnologia/normas , Políticas
4.
F1000Res ; 11: 1532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38463031

RESUMO

Background: Advanced materials are most likely to bring future economic, environmental and social benefits. At the same time, they may pose challenges regarding their safety and sustainability along the entire lifecycle. This needs to be timely addressed by the stakeholders (industry, research, policy, funding and regulatory bodies). As part of a larger foresight project, this study aimed to identify areas of scientific research and technological development related to advanced materials, in particular advanced nanomaterials and the sub-group of smart nanomaterials. The study identified and collected data to build relevant research and innovation indicators and analyse trends, impact and other implications. Methods: This study consisted of an iterative process including a documentation phase followed by the identification, description and development of a set of core research and innovation indicators regarding scientific publications, EU projects and patents. The data was extracted mainly from SCOPUS, CORDIS and PATSTAT databases using a predefined search string that included representative keywords. The trends, distributions and other aspects reflected in the final version of the indicators were analysed, e.g. the number of items in a period of time, geographical distribution, organisations involved, categories of journals, funding programmes, costs and technology areas. Results: Generally, for smart nanomaterials the data used represent around 3.5% of the advanced nanomaterials data, while for each field analysed, they represent 4.4% for publications, 13% for projects and 1.1% for patents. The study shows current trends for advanced nanomaterials at a top-level information that can be further extended with sub-indicators. Generally, the results indicated a significant growth in research into advanced nanomaterials, including smart nanomaterials, in the last decade, leading to an increased availability of information. Conclusion: These indicators identify trends regarding scientific and technological achievements and represent an important element when examining possible impacts on society and policy implications associated to these areas.


Assuntos
Nanoestruturas , Tecnologia , Custos e Análise de Custo , Políticas , Publicações
5.
NanoImpact ; 21: 100297, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33738354

RESUMO

The European Green Deal, the European Commission's new Action Plan for a Circular Economy, the new European Industrial Strategy and the Chemicals Strategy for Sustainability launched in October 2020 are ambitious plans to achieve a sustainable, fair and inclusive European Union's economy. In line with the United Nations Sustainable Development Goals 2030, these policies require that any new material or product should be not only functional and cost-effective but also safe and sustainable to ensure compliance with regulation and acceptance by consumers. Nanotechnology is one of the technologies that could enable such a green growth. This paper focuses on advanced nanomaterials that actively respond to external stimuli, also known as 'smart nanomaterials', and which are already on the market or in the research and development phase for non-medical applications such as in agriculture, food, food packaging and cosmetics. A review shows that smart nanomaterials and enabled products may present new challenges for safety and sustainability assessment due to their complexity and dynamic behaviour. Moreover, existing regulatory frameworks, in particular in the European Union, are probably not fully prepared to address them. What is missing today is a systematic and comprehensive approach that allows for considering sustainability aspects hand in hand with safety considerations very early on at the material design stage. We call on innovators, scientists and authorities to further develop and promote the 'Safe- and Sustainable-by-Design' concept in nanotechnology and propose some initiatives to go into this direction.


Assuntos
Nanoestruturas , Agricultura , União Europeia , Nanoestruturas/efeitos adversos , Nanotecnologia , Desenvolvimento Sustentável
6.
NanoImpact ; 24: 100356, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-35559815

RESUMO

Commentary on two recent papers published in NanoImpact "Safe(r) by design implementation in the nanotechnology industry" and "Integrative approach in a safe by design context combining risk, life cycle and socio-economic assessment for safer and sustainable nanomaterials".


Assuntos
Nanoestruturas , Nanotecnologia , Animais , Indústrias , Estágios do Ciclo de Vida , Nanoestruturas/efeitos adversos , Fatores Socioeconômicos
7.
Nanoscale ; 12(7): 4695-4708, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32049073

RESUMO

Grouping and read-across has emerged as a reliable approach to generate safety-related data on nanomaterials (NMs). However, its successful implementation relies on the availability of detailed characterisation of NM physicochemical properties, which allows the definition of groups based on read-across similarity. To this end, this study assessed the availability and completeness of existing (meta)data on 11 experimentally determined physicochemical properties and 18 NMs. Data on representative NMs were mainly extracted from existing datasets stored in the eNanoMapper database, now available on the European Observatory on Nanomaterials website, while data on case-study NMs were provided by their industrial manufacturers. The extent of available (meta)data was assessed and data gaps were identified, thereby determining future testing needs. Data completeness was assessed by using the information checklists included in the templates for data logging developed by the EU-funded projects NANoREG and GRACIOUS. A completeness score (CS) between 0 and 1 was calculated for each (meta)data unit, template section, property, technique and NM. The results show a heterogeneous distribution of available (meta)data across materials and properties, with none of the selected NMs fully characterised. The average CS calculated for representative NMs (0.43) was considerably lower than for case-study NMs (0.68). The low CS was largely caused by missing information on sample preparation and standard operating procedures, and was attributed to a lack of harmonised data reporting and entry procedure. This study therefore suggests that a persistent use of well-defined and harmonised reporting schemes for experimental results is a useful tool to increase (meta)data completeness and ensure their integration and reuse.

8.
Regul Toxicol Pharmacol ; 104: 74-83, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30831158

RESUMO

The OECD Working Party on Manufactured Nanomaterials (WPMN) provides a global forum for discussion of nano-safety issues. Together with the OECD Test Guidelines Programme (TGP) the WPMN has explored the need for adaptation of some of the existing OECD Test Guidelines (TGs) and Guidance Documents (GDs) as well as developing new TGs and GDs to specifically address NM issues. An overview is provided of progress in the TGP and WPMN, and information on supporting initiatives, regarding the development of TGs for nanomaterials addressing Physical Chemical Properties, Effects on Biotic Systems, Environmental Fate and Behaviour, and Health Effects. Three TGs specifically addressing manufactured nanomaterials have been adopted: a new TG318 ″Dispersion Stability of Nanomaterials in Simulated Environmental Media", and adaptation of TG412 and TG413 on Subacute Inhalation Toxicity: 28-Day Study/90-day Study. The associated GD39 on Inhalation Toxicity Testing has also been revised. The TGP current develops four new TGs and four GDs. One new TG and six GDs are developed in the WPMN. Six new proposals were submitted to the TGP in 2018. Furthermore, as TGs are accompanied by OECD harmonised templates (OHTs) for data collection, an outline of recently developed OHTs particularly relevant for NMs is also included.


Assuntos
Nanoestruturas/efeitos adversos , Nanoestruturas/análise , Organização para a Cooperação e Desenvolvimento Econômico , Testes de Toxicidade/normas , Administração por Inalação , Animais , Humanos , Nanoestruturas/administração & dosagem
9.
Arch Toxicol ; 92(1): 121-141, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29273819

RESUMO

Development and market introduction of new nanomaterials trigger the need for an adequate risk assessment of such products alongside suitable risk communication measures. Current application of classical and new nanomaterials is analyzed in context of regulatory requirements and standardization for chemicals, food and consumer products. The challenges of nanomaterial characterization as the main bottleneck of risk assessment and regulation are presented. In some areas, e.g., quantification of nanomaterials within complex matrices, the establishment and adaptation of analytical techniques such as laser ablation inductively coupled plasma mass spectrometry and others are potentially suited to meet the requirements. As an example, we here provide an approach for the reliable characterization of human exposure to nanomaterials resulting from food packaging. Furthermore, results of nanomaterial toxicity and ecotoxicity testing are discussed, with concluding key criteria such as solubility and fiber rigidity as important parameters to be considered in material development and regulation. Although an analysis of the public opinion has revealed a distinguished rating depending on the particular field of application, a rather positive perception of nanotechnology could be ascertained for the German public in general. An improvement of material characterization in both toxicological testing as well as end-product control was concluded as being the main obstacle to ensure not only safe use of materials, but also wide acceptance of this and any novel technology in the general public.


Assuntos
Exposição Ambiental/análise , Nanoestruturas/análise , Nanoestruturas/toxicidade , Medição de Risco/métodos , Administração Oral , Animais , Desinfetantes , Ecotoxicologia/métodos , Exposição Ambiental/efeitos adversos , Embalagem de Alimentos , Alemanha , Humanos , Indústrias/métodos , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Legislação sobre Alimentos , Nanoestruturas/administração & dosagem , Nanoestruturas/normas , Opinião Pública
10.
Regul Toxicol Pharmacol ; 92: 8-28, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29074277

RESUMO

Identifying and characterising nanomaterials require additional information on physico-chemical properties and test methods, compared to chemicals in general. Furthermore, regulatory decisions for chemicals are usually based upon certain toxicological properties, and these effects may not be equivalent to those for nanomaterials. However, regulatory agencies lack an authoritative decision framework for nanomaterials that links the relevance of certain physico-chemical endpoints to toxicological effects. This paper investigates various physico-chemical endpoints and available test methods that could be used to produce such a decision framework for nanomaterials. It presents an overview of regulatory relevance and methods used for testing fifteen proposed physico-chemical properties of eleven nanomaterials in the OECD Working Party on Manufactured Nanomaterials' Testing Programme, complemented with methods from literature, and assesses the methods' adequacy and applications limits. Most endpoints are of regulatory relevance, though the specific parameters depend on the nanomaterial and type of assessment. Size (distribution) is the common characteristic of all nanomaterials and is decisive information for classifying a material as a nanomaterial. Shape is an important particle descriptor. The octanol-water partitioning coefficient is undefined for particulate nanomaterials. Methods, including sample preparation, need to be further standardised, and some new methods are needed. The current work of OECD's Test Guidelines Programme regarding physico-chemical properties is highlighted.


Assuntos
Nanoestruturas/química , Humanos , Organização para a Cooperação e Desenvolvimento Econômico , Tamanho da Partícula , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA