Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Chem ; 105: 104383, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33130342

RESUMO

The quinolone-3-carboxylic acid scaffold is essential structure for antibacterial activity of fluoroquinolones such as ciprofloxacin. Modification of 3-carboxylic functionality in this structure can be used for switching its activity from antibacterial to anticancer. Accordingly, a series of C-3 modified ciprofloxacin derivatives containing N-(5-(benzylthio)-1,3,4-thiadiazol-2-yl)-carboxamide moiety was synthesized as novel anticancer agents. Most of compounds showed significant activity against MCF-7, A549 and SKOV-3 cancer cells in the MTT assay. In particular, compounds 13a-e and 13g were found to be as potent as standard drug doxorubicin against MCF-7 cell line (IC50s = 3.26-3.90 µM). Furthermore, the 4-fluorobenzyl derivatives 13h and 14b with IC50 values of 3.58 and 2.79 µM exhibited the highest activity against SKOV-3 and A549 cells, being as potent as doxorubicin. Two promising compounds 13e and 13g were further tested for their apoptosis inducing activity and cell cycle arrest. Both compounds could significantly induce apoptosis in MCF-7 cells, while compound 13e was more potent apoptosis inducer resulting in an 18-fold increase in the proportion of apoptotic cells at the IC50 concentration in MCF-7 cells. The cell cycle analysis revealed that compounds 13e and 13g could increase cell portions in the sub-G1 phase, inducing oligonucleosomal DNA fragmentation and apoptosis confirmed by comet assay.


Assuntos
Antineoplásicos/farmacologia , Ciprofloxacina/farmacologia , Tiadiazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciprofloxacina/síntese química , Ciprofloxacina/química , Dano ao DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Tiadiazóis/síntese química , Tiadiazóis/química
2.
Turk J Chem ; 44(1): 194-213, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488152

RESUMO

Cancer is one of the main global health problems. In order to develop novel antitumor agents, we synthesized 3,4-dihydropyrimidine-2(1H)-one (DHPM) and 2,6-diaryl-substituted pyridine derivatives as potential antitumor structures and evaluated their cytotoxic effects against several cancer cell lines. An easy and convenient method is reported for the synthesis of these derivatives, employing cobalt ferrite (CoFe 2 O 4 @SiO 2 -SO 3 H) magnetic nanoparticles under microwave irradiation and solvent-free conditions. The structural characteristics of the prepared nanocatalyst were investigated by FTIR, XRD, SEM, and TGA techniques. In vitro cytotoxic effects of the synthesized products were assessed against the human breast adenocarcinoma cell line (MCF-7), gastric adenocarcinoma (AGS), and human embryonic kidney (HEK293) cells via MTT assay. The results indicated that compound 4r (DHPM derivative) was the most toxic molecule against the MCF-7 cell line (IC 50 of 0.17 µg/mL). Moreover, compounds 4j and 4r (DHPM derivatives) showed excellent cytotoxic activities against the AGS cell line, with an IC 50 of 4.90 and 4.97 µg/mL, respectively. Although they are pyridine derivatives, compounds 5g and 5m were more active against the MCF-7 cell line. Results showed that the candidate compounds exhibited low cytotoxicity against HEK293 cells. The kinesin Eg5 inhibitory potential of the candidate compounds was evaluated by molecular docking. The docking results showed that, among the pyridine derivatives, compound 5m had the most free energy of binding (-9.52 kcal/mol) and lowest Ki (0.105 µM), and among the pyrimidine derivatives, compound 4r had the most free energy of binding (-7.67 kcal/mol) and lowest Ki (2.39 µM). Ligand-enzyme affinity maps showed that compounds 4r and 5m had the potential to interact with the Eg5 binding site via H-bond interactions to GLU116 and GLY117 residues. The results of our study strongly suggest that DHPM and pyridine derivatives inhibit important tumorigenic features of breast and gastric cancer cells. Our results may be helpful in the further design of DHPMs and pyridine derivatives as potential anticancer agents.

3.
Artigo em Inglês | MEDLINE | ID: mdl-29310028

RESUMO

In a search for novel antiproliferative agents, a series of quinoxaline derivatives containing 2-aminoimidazole (8a-8x) were designed and synthesized. The structures of synthesized compounds were confirmed by IR, 1H NMR, 13C NMR, Mass Spectroscopy and analyzed using HSQC, COSY, ROESY, HMBC techniques. The anticancer activity of all derivatives were evaluated for colon cancer and breast cancer cell lines by the MTT assay and acridine orange/ethidium bromide double staining method. The anti-cancer effect in human colon cancer (HCT-116) and breast cancer (MCF-7) cell lines exhibited that compounds 8a, 8s, 8t, 8w, 8x appeared as potent antiproliferative agents and especially inhibited the human colon cancer cell proliferation with percentage of inhibition by over 50%. The most active compound was (E)-4-phenyl-1-((quinoxalin-2-ylmethylene)amino)-1H-imidazol-2-amine (8a) with the highest inhibition for MCF-7 (83.3%) and HCT-116 (70%) cell lines after 48 and 24h, respectively. Molecular docking studies of these derivatives within c-kit active site as a validated target might be suggested them as appropriate candidates for further efforts toward more potent anticancer compounds.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Imidazóis/química , Neoplasias/patologia , Quinoxalinas/química , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Neoplasias/tratamento farmacológico , Relação Estrutura-Atividade , Células Tumorais Cultivadas
4.
Environ Toxicol Pharmacol ; 51: 71-84, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28292652

RESUMO

To reduce costly late-phase compound scrubbing, there has been an increased focus on assessing compounds within in vitro assays that predict properties of human safety liabilities, before preclinical in vivo studies. The aim of our study was to answer the questions that whether the toxicity risk of a series of 3-oxobutanamide derivatives could be predicted by using of human lymphocytes and their isolated mitochondria. Using biochemical and flow cytometry assessments, we demonstrated that exposure of lymphocytes and isolated mitochondria to five 3-oxobutanamide derivatives (1-5) did not exhibit remarkable toxicity at low concentrations (50-500µM) but toxicity could be observed at high concentrations (1000 and 2000µM), particularly for N-(5-(4-bromophenyl)-3-isoxazolyl)-3-oxobutanamide (4) and N-(2-benzothiazolyl)-3-oxo butanamide (5). Compounds 4, 5 and partly N-(5-methyl-3-isoxazol yl)-3-oxo butanamide (1) also showed a marked cellular and mitochondrial toxicity while compound 5 displayed superior toxicity. Compound 5 induced cytotoxicity on human blood lymphocytes which was associated with the generation of intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP) collapse, lysosomal membrane injury, lipid peroxidation and depletion of glutathione. Our results suggested that among assessed compounds, increased toxicity of compound 5 compared to other compounds could be likely attributed to the presence of bromine substituent in 5. Finally our findings proposed that using of antioxidants and mitochondrial/lysosomal protective agents could be beneficial in decreasing the toxicity of 5.


Assuntos
Apoptose/efeitos dos fármacos , Descoberta de Drogas , Compostos Heterocíclicos/toxicidade , Hidrazonas/toxicidade , Linfócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Adulto , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocromos c/metabolismo , Relação Dose-Resposta a Droga , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Peroxidação de Lipídeos/efeitos dos fármacos , Linfócitos/metabolismo , Linfócitos/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dilatação Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Testes de Toxicidade
5.
Iran J Pharm Res ; 15(3): 413-420, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27980576

RESUMO

Cancer is a leading cause of death worldwide. Despite the availability of several chemotherapeutic drugs, there is still a great need for more efficient agents for a better management of cancer. In this contribution, a series of 11 1,4-dihydropyridines (1,4-DHPs) (4a, 4b and 7a-i) were synthesized and evaluated for their cytotoxic effect against MCF-7, LS180 and MOLT-4 cancer cell lines using MTT assay. Synthesized 2,6-dimethyl-3,5-bis-N-(aryl/heteroaryl) carbamoyl-4-aryl-1,4-dihydropyridines exhibited different potencies ranging from weak to good cytotoxic activities, while no activity could be recorded for 1,4-bis(2,6-dimethyl-3,5-dialkyloxylcarbonyl,4-dihydropyridine-4-yl) benzene compounds (4a and 4b). Tested DHP derivatives were more potent against MOLT-4 cells, when compared to LS180 and MCF-7 cells. Compounds 7d (IC50 = 28.5 ± 3.5 µM), 7a (IC50 = 29.7 ± 4.7 µM) and 7a (IC50 = 17.4 ± 2.0 µM) were the most potent derivatives against MCF-7, LS180 and MOLT-4 cells, respectively. It appeared that the introduction of N-thiazolyl carbamoyl group at the C3 and C5 positions of DHP ring enhanced the cytotoxic potential of these derivatives (compounds 7a-e). The findings of this study suggest that some of the thiazole substituted 1,4-DHPs may be candidates for further modifications towards the discovery of potent anticancer agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA