Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38926092

RESUMO

Radiographic assessment plays a crucial role in the management of patients with central nervous system (CNS) tumors, aiding in treatment planning and evaluation of therapeutic efficacy by quantifying response. Recently, an updated version of the Response Assessment in Neuro-Oncology (RANO) criteria (RANO 2.0) was developed to improve upon prior criteria and provide an updated, standardized framework for assessing treatment response in clinical trials for gliomas in adults. This article provides an overview of significant updates to the criteria including (1) the use of a unified set of criteria for high and low grade gliomas in adults; (2) the use of the post-radiotherapy MRI scan as the baseline for evaluation in newly diagnosed high-grade gliomas; (3) the option for the trial to mandate a confirmation scan to more reliably distinguish pseudoprogression from tumor progression; (4) the option of using volumetric tumor measurements; and (5) the removal of subjective non-enhancing tumor evaluations in predominantly enhancing gliomas (except for specific therapeutic modalities). Step-by-step pragmatic guidance is hereby provided for the neuroradiologist and imaging core lab involved in operationalization and technical execution of RANO 2.0 in clinical trials, including the display of representative cases and in-depth discussion of challenging scenarios.

2.
J Clin Oncol ; 41(33): 5187-5199, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37774317

RESUMO

PURPOSE: The Response Assessment in Neuro-Oncology (RANO) criteria for high-grade gliomas (RANO-HGG) and low-grade gliomas (RANO-LGG) were developed to improve reliability of response assessment in glioma trials. Over time, some limitations of these criteria were identified, and challenges emerged regarding integrating features of the modified RANO (mRANO) or the immunotherapy RANO (iRANO) criteria. METHODS: Informed by data from studies evaluating the different criteria, updates to the RANO criteria are proposed (RANO 2.0). RESULTS: We recommend a standard set of criteria for both high- and low-grade gliomas, to be used for all trials regardless of the treatment modalities being evaluated. In the newly diagnosed setting, the postradiotherapy magnetic resonance imaging (MRI), rather than the postsurgical MRI, will be used as the baseline for comparison with subsequent scans. Since the incidence of pseudoprogression is high in the 12 weeks after radiotherapy, continuation of treatment and confirmation of progression during this period with a repeat MRI, or histopathologic evidence of unequivocal recurrent tumor, are required to define tumor progression. However, confirmation scans are not mandatory after this period nor for the evaluation of treatment for recurrent tumors. For treatments with a high likelihood of pseudoprogression, mandatory confirmation of progression with a repeat MRI is highly recommended. The primary measurement remains the maximum cross-sectional area of tumor (two-dimensional) but volumetric measurements are an option. For IDH wild-type glioblastoma, the nonenhancing disease will no longer be evaluated except when assessing response to antiangiogenic agents. In IDH-mutated tumors with a significant nonenhancing component, clinical trials may require evaluating both the enhancing and nonenhancing tumor components for response assessment. CONCLUSION: The revised RANO 2.0 criteria refine response assessment in gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Adulto , Neoplasias Encefálicas/tratamento farmacológico , Reprodutibilidade dos Testes , Recidiva Local de Neoplasia , Glioma/patologia , Imageamento por Ressonância Magnética/métodos
3.
J Clin Oncol ; 41(17): 3160-3171, 2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37027809

RESUMO

PURPOSE: The Response Assessment in Neuro-Oncology (RANO) criteria are widely used in high-grade glioma clinical trials. We compared the RANO criteria with updated modifications (modified RANO [mRANO] and immunotherapy RANO [iRANO] criteria) in patients with newly diagnosed glioblastoma (nGBM) and recurrent GBM (rGBM) to evaluate the performance of each set of criteria and inform the development of the planned RANO 2.0 update. MATERIALS AND METHODS: Evaluation of tumor measurements and fluid-attenuated inversion recovery (FLAIR) sequences were performed by blinded readers to determine disease progression using RANO, mRANO, iRANO, and other response assessment criteria. Spearman's correlations between progression-free survival (PFS) and overall survival (OS) were calculated. RESULTS: Five hundred twenty-six nGBM and 580 rGBM cases were included. Spearman's correlations were similar between RANO and mRANO (0.69 [95% CI, 0.62 to 0.75] v 0.67 [95% CI, 0.60 to 0.73]) in nGBM and rGBM (0.48 [95% CI, 0.40 to 0.55] v 0.50 [95% CI, 0.42 to 0.57]). In nGBM, requirement of a confirmation scan within 12 weeks of completion of radiotherapy to determine progression was associated with improved correlations. Use of the postradiation magnetic resonance imaging (MRI) as baseline scan was associated with improved correlation compared with use of the pre-radiation MRI (0.67 [95% CI, 0.60 to 0.73] v 0.53 [95% CI, 0.42 to 0.62]). Evaluation of FLAIR sequences did not improve the correlation. Among patients who received immunotherapy, Spearman's correlations were similar among RANO, mRANO, and iRANO. CONCLUSION: RANO and mRANO demonstrated similar correlations between PFS and OS. Confirmation scans were only beneficial in nGBM within 12 weeks of completion of radiotherapy, and there was a trend in favor of the use of postradiation MRI as the baseline scan in nGBM. Evaluation of FLAIR can be omitted. The iRANO criteria did not add significant benefit in patients who received immune checkpoint inhibitors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/terapia , Glioblastoma/tratamento farmacológico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Glioma/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Imunoterapia
4.
Sci Rep ; 11(1): 7632, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828310

RESUMO

Tumoral hypoxia correlates with worse outcomes in glioblastoma (GBM). While bevacizumab is routinely used to treat recurrent GBM, it may exacerbate hypoxia. Evofosfamide is a hypoxia-targeting prodrug being tested for recurrent GBM. To characterize resistance to bevacizumab and identify those with recurrent GBM who may benefit from evofosfamide, we ascertained MRI features and hypoxia in patients with GBM progression receiving both agents. Thirty-three patients with recurrent GBM refractory to bevacizumab were enrolled. Patients underwent MR and 18F-FMISO PET imaging at baseline and 28 days. Tumor volumes were determined, MRI and 18F-FMISO PET-derived parameters calculated, and Spearman correlations between parameters assessed. Progression-free survival decreased significantly with hypoxic volume [hazard ratio (HR) = 1.67, 95% confidence interval (CI) 1.14 to 2.46, P = 0.009] and increased significantly with time to the maximum value of the residue (Tmax) (HR = 0.54, 95% CI 0.34 to 0.88, P = 0.01). Overall survival decreased significantly with hypoxic volume (HR = 1.71, 95% CI 1.12 to 12.61, p = 0.01), standardized relative cerebral blood volume (srCBV) (HR = 1.61, 95% CI 1.09 to 2.38, p = 0.02), and increased significantly with Tmax (HR = 0.31, 95% CI 0.15 to 0.62, p < 0.001). Decreases in hypoxic volume correlated with longer overall and progression-free survival, and increases correlated with shorter overall and progression-free survival. Hypoxic volume and volume ratio were positively correlated (rs = 0.77, P < 0.0001), as were hypoxia volume and T1 enhancing tumor volume (rs = 0.75, P < 0.0001). Hypoxia is a key biomarker in patients with bevacizumab-refractory GBM. Hypoxia and srCBV were inversely correlated with patient outcomes. These radiographic features may be useful in evaluating treatment and guiding treatment considerations.


Assuntos
Glioblastoma/metabolismo , Recidiva Local de Neoplasia/metabolismo , Hipóxia Tumoral/fisiologia , Adulto , Idoso , Bevacizumab/metabolismo , Bevacizumab/uso terapêutico , Biomarcadores Farmacológicos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Volume Sanguíneo Cerebral/fisiologia , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/mortalidade , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Misonidazol/análogos & derivados , Misonidazol/uso terapêutico , Tomografia por Emissão de Pósitrons/métodos , Intervalo Livre de Progressão , Adulto Jovem
6.
J Neurosurg ; : 1-11, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653812

RESUMO

OBJECTIVE: While the effect of increased extent of resection (EOR) on survival in diffuse infiltrating low-grade glioma (LGG) patients is well established, there is still uncertainty about the influence of the new WHO molecular subtypes. The authors designed a retrospective analysis to assess the interplay between EOR and molecular classes. METHODS: The authors retrospectively reviewed the records of 326 patients treated surgically for hemispheric WHO grade II LGG at Brigham and Women's Hospital and Massachusetts General Hospital (2000-2017). EOR was calculated volumetrically and Cox proportional hazards models were built to assess for predictive factors of overall survival (OS), progression-free survival (PFS), and malignant progression-free survival (MPFS). RESULTS: There were 43 deaths (13.2%; median follow-up 5.4 years) among 326 LGG patients. Median preoperative tumor volume was 31.2 cm3 (IQR 12.9-66.0), and median postoperative residual tumor volume was 5.8 cm3 (IQR 1.1-20.5). On multivariable Cox regression, increasing postoperative volume was associated with worse OS (HR 1.02 per cm3; 95% CI 1.00-1.03; p = 0.016), PFS (HR 1.01 per cm3; 95% CI 1.00-1.02; p = 0.001), and MPFS (HR 1.01 per cm3; 95% CI 1.00-1.02; p = 0.035). This result was more pronounced in the worse prognosis subtypes of IDH-mutant and IDH-wildtype astrocytoma, for which differences in survival manifested in cases with residual tumor volume of only 1 cm3. In oligodendroglioma patients, postoperative residuals impacted survival when exceeding 8 cm3. Other significant predictors of OS were age at diagnosis, IDH-mutant and IDH-wildtype astrocytoma classes, adjuvant radiotherapy, and increasing preoperative volume. CONCLUSIONS: The results corroborate the role of EOR in survival and malignant transformation across all molecular subtypes of diffuse LGG. IDH-mutant and IDH-wildtype astrocytomas are affected even by minimal postoperative residuals and patients could potentially benefit from a more aggressive surgical approach.

7.
Neuro Oncol ; 21(1): 26-36, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137421

RESUMO

No standard criteria exist for assessing response and progression in clinical trials involving patients with meningioma, and there is no consensus on the optimal endpoints for trials currently under way. As a result, there is substantial variation in the design and response criteria of meningioma trials, making comparison between trials difficult. In addition, future trials should be designed with accepted standardized endpoints. The Response Assessment in Neuro-Oncology Meningioma Working Group is an international effort to develop standardized radiologic criteria for treatment response for meningioma clinical trials. In this proposal, we present the recommendations for response criteria and endpoints for clinical trials involving patients with meningiomas.


Assuntos
Ensaios Clínicos como Assunto , Neoplasias Meníngeas/patologia , Meningioma/patologia , Neuroimagem/métodos , Avaliação de Processos e Resultados em Cuidados de Saúde , Guias de Prática Clínica como Assunto/normas , Terapia Combinada , Progressão da Doença , Humanos , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/terapia , Meningioma/diagnóstico por imagem , Meningioma/terapia
8.
AJR Am J Roentgenol ; 211(6): 1342-1347, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30332289

RESUMO

OBJECTIVE: In MRI of patients with recurrent glioblastoma, bevacizumab-induced normalization of tumor vascularity can be difficult to differentiate from antitumor effects. The aim of this study was to assess the utility of 18F-fluoroethyl-L-tyrosine (FET) PET in the evaluation of recurrent glioblastoma treated with bevacizumab. SUBJECTS AND METHODS: MRI and FET PET were performed before and after administration of two doses of bevacizumab to 11 patients with recurrent glioblastoma. The ratio between normalized FET uptake at follow-up and baseline of the entire (volume of T2 FLAIR abnormality) and enhancing tumor were assessed for prediction of progression-free survival (PFS) and overall survival (OS). Voxel-wise Spearman correlation between normalized FET uptake and contrast-enhanced T1 signal intensity was assessed and tested as a predictor of PFS and OS. RESULTS: Mean Spearman correlation between FET uptake and contrast-enhanced T1 signal intensity before therapy was 0.65 and after therapy was 0.61 (p = 0.256). The median PFS after initiation of bevacizumab therapy was 111 days, and the OS was 223 days. A post-treatment to pretreatment PET uptake ratio (mean and 90th percentile) greater than 0.7 for both entire and enhancing tumor was associated with lower PFS and OS (p < 0.001-0.049). The increase in correlation between PET uptake and contrast-enhanced T1 intensity after treatment was associated with lower PFS (p < 0.001) and OS (p = 0.049). CONCLUSION: There is only a moderate correlation between FET PET uptake and contrast-enhanced T1 signal intensity. High posttreatment-to-pretreatment FET PET uptake ratio and increase in correlation between PET uptake and contrast-enhanced T1 signal intensity after bevacizumab treatment are associated with poor PFS and OS.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Recidiva Local de Neoplasia/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Tirosina/análogos & derivados , Bevacizumab/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/mortalidade , Valor Preditivo dos Testes
9.
Neuro Oncol ; 20(7): 897-906, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29788429

RESUMO

Background: Corticosteroids are the mainstay of treatment for peritumor edema but are often associated with significant side effects. Therapies that can reduce corticosteroid use would potentially be of significant benefit to patients. However, currently there are no standardized endpoints evaluating corticosteroid use in neuro-oncology clinical trials. Methods: The Response Assessment in Neuro-Oncology (RANO) Working Group has developed consensus recommendations for endpoints evaluating corticosteroid use in clinical trials in both adults and children with brain tumors. Results: Responders are defined as patients with a 50% reduction in total daily corticosteroid dose compared with baseline or reduction of the total daily dose to ≤2 mg of dexamethasone (or equivalent dose of other corticosteroid); baseline dose must be at least 4 mg of dexamethasone daily (or equivalent dose of other corticosteroids) for at least one week. Patients must have stable or improved Neurologic Assessment in Neuro-Oncology (NANO) score or Karnofsky performance status score or Eastern Cooperative Oncology Group (ECOG) (Lansky score for children age <16 y), and an improved score on a relevant clinical outcome assessment tool. These criteria must be sustained for at least 4 weeks after baseline assessment to be considered a response, and are confirmed 4 weeks after that (ie, 8 wk after baseline assessment) to be considered a sustained response. Conclusions: This RANO proposal for corticosteroid use endpoints in neuro-oncology clinical trials may need to be refined and will require prospective validation in clinical studies.


Assuntos
Corticosteroides/uso terapêutico , Edema Encefálico/diagnóstico por imagem , Neoplasias Encefálicas/complicações , Neuroimagem/métodos , Medição de Risco/métodos , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Neoplasias Encefálicas/terapia , Humanos
10.
Neuro Oncol ; 19(5): 625-635, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28453751

RESUMO

Background: The Macdonald criteria and the Response Assessment in Neuro-Oncology (RANO) criteria define radiologic parameters to classify therapeutic outcome among patients with malignant glioma and specify that clinical status must be incorporated and prioritized for overall assessment. But neither provides specific parameters to do so. We hypothesized that a standardized metric to measure neurologic function will permit more effective overall response assessment in neuro-oncology. Methods: An international group of physicians including neurologists, medical oncologists, radiation oncologists, and neurosurgeons with expertise in neuro-oncology drafted the Neurologic Assessment in Neuro-Oncology (NANO) scale as an objective and quantifiable metric of neurologic function evaluable during a routine office examination. The scale was subsequently tested in a multicenter study to determine its overall reliability, inter-observer variability, and feasibility. Results: The NANO scale is a quantifiable evaluation of 9 relevant neurologic domains based on direct observation and testing conducted during routine office visits. The score defines overall response criteria. A prospective, multinational study noted a >90% inter-observer agreement rate with kappa statistic ranging from 0.35 to 0.83 (fair to almost perfect agreement), and a median assessment time of 4 minutes (interquartile range, 3-5). Conclusion: The NANO scale provides an objective clinician-reported outcome of neurologic function with high inter-observer agreement. It is designed to combine with radiographic assessment to provide an overall assessment of outcome for neuro-oncology patients in clinical trials and in daily practice. Furthermore, it complements existing patient-reported outcomes and cognition testing to combine for a global clinical outcome assessment of well-being among brain tumor patients.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Neuroimagem/métodos , Neoplasias Encefálicas/patologia , Humanos , Resultado do Tratamento
11.
Neuroradiology ; 59(2): 135-145, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28070598

RESUMO

INTRODUCTION: We describe the imaging findings encountered in GBM patients receiving immune checkpoint blockade and assess the potential of quantitative MRI biomarkers to differentiate patients who derive therapeutic benefit from those who do not. METHODS: A retrospective analysis was performed on longitudinal MRIs obtained on recurrent GBM patients enrolled on clinical trials. Among 10 patients with analyzable data, bidirectional diameters were measured on contrast enhanced T1 (pGd-T1WI) and volumes of interest (VOI) representing measurable abnormality suggestive of tumor were selected on pGdT1WI (pGdT1 VOI), FLAIR-T2WI (FLAIR VOI), and ADC maps. Intermediate ADC (IADC) VOI represented voxels within the FLAIR VOI having ADC in the range of highly cellular tumor (0.7-1.1 × 10-3 mm2/s) (IADC VOI). Therapeutic benefit was determined by tissue pathology and survival on trial. IADC VOI, pGdT1 VOI, FLAIR VOI, and RANO assessment results were correlated with patient benefit. RESULTS: Five patients were deemed to have received therapeutic benefit and the other five patients did not. The average time on trial for the benefit group was 194 days, as compared to 81 days for the no benefit group. IADC VOI correlated well with the presence or absence of clinical benefit in 10 patients. Furthermore, pGd VOI, FLAIR VOI, and RANO assessment correlated less well with response. CONCLUSION: MRI reveals an initial increase in volumes of abnormal tissue with contrast enhancement, edema, and intermediate ADC suggesting hypercellularity within the first 0-6 months of immunotherapy. Subsequent stabilization and improvement in IADC VOI appear to better predict ultimate therapeutic benefit from these agents than conventional imaging.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Imunoterapia/métodos , Imageamento por Ressonância Magnética/métodos , Biomarcadores Tumorais , Neoplasias Encefálicas/patologia , Meios de Contraste , Feminino , Glioblastoma/patologia , Humanos , Interpretação de Imagem Assistida por Computador , Ipilimumab , Masculino , Gradação de Tumores , Recidiva Local de Neoplasia/patologia , Nivolumabe , Estudos Retrospectivos , Taxa de Sobrevida , Resultado do Tratamento
12.
Clin Cancer Res ; 22(3): 575-81, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26490307

RESUMO

PURPOSE: The RANO criteria have not been assessed using outcome data from prospective trials. We examined the radiologic data of patients with recurrent glioblastoma from the randomized phase II trial (AVF3708g) to determine the effect of including T2/FLAIR evaluation as per RANO criteria on measurements of objective response rates (ORRs) and progression-free survival (PFS) compared with assessment based on contrast enhancement (Macdonald criteria). EXPERIMENTAL DESIGN: The ORRs and median PFS were determined using the RANO criteria and compared with those obtained using the Macdonald criteria. Landmark analyses were performed at 2, 4, and 6 months, and Cox proportional hazard models were used to determine the associations between OR and progression with subsequent survival. RESULTS: The ORRs were 0.331 [95% confidence interval (CI), 0.260-0.409] and 0.393 (95% CI, 0.317-0.472) by RANO and Macdonald criteria, respectively (P < 0.0001). The median PFS was 4.6 months (95% CI, 4.1-5.5) using RANO criteria, compared with 6.4 months (95% CI, 5.5-7.1) as determined by Macdonald criteria (P = 0.01). At 2-, 4-, and 6-month landmarks, both OR status and PFS determined by either RANO or Macdonald criteria were predictive of overall survival [OS; hazard ratios for 4-month landmark (OR HR = 1.93, P = 0.0012; PFS HR, 4.23, P < 0.0001)]. CONCLUSIONS: The inclusion of T2/FLAIR assessment resulted in statistically significant differences in median PFS and ORRs compared with assessment of solely enhancing tumor (Macdonald criteria), although OR and PFS determined by both RANO and Macdonald criteria correlated with OS.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Antineoplásicos/uso terapêutico , Bevacizumab/uso terapêutico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/diagnóstico , Glioblastoma/tratamento farmacológico , Adulto , Idoso , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/efeitos adversos , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Bevacizumab/administração & dosagem , Bevacizumab/efeitos adversos , Neoplasias Encefálicas/mortalidade , Ensaios Clínicos Fase II como Assunto , Terapia Combinada , Feminino , Glioblastoma/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Variações Dependentes do Observador , Ensaios Clínicos Controlados Aleatórios como Assunto , Retratamento , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
13.
Lancet Oncol ; 16(15): e534-e542, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26545842

RESUMO

Immunotherapy is a promising area of therapy in patients with neuro-oncological malignancies. However, early-phase studies show unique challenges associated with the assessment of radiological changes in response to immunotherapy reflecting delayed responses or therapy-induced inflammation. Clinical benefit, including long-term survival and tumour regression, can still occur after initial disease progression or after the appearance of new lesions. Refinement of the response assessment criteria for patients with neuro-oncological malignancies undergoing immunotherapy is therefore warranted. Herein, a multinational and multidisciplinary panel of neuro-oncology immunotherapy experts describe immunotherapy Response Assessment for Neuro-Oncology (iRANO) criteria based on guidance for the determination of tumour progression outlined by the immune-related response criteria and the RANO working group. Among patients who demonstrate imaging findings meeting RANO criteria for progressive disease within 6 months of initiating immunotherapy, including the development of new lesions, confirmation of radiographic progression on follow-up imaging is recommended provided that the patient is not significantly worse clinically. The proposed criteria also include guidelines for the use of corticosteroids. We review the role of advanced imaging techniques and the role of measurement of clinical benefit endpoints including neurological and immunological functions. The iRANO guidelines put forth in this Review will evolve successively to improve their usefulness as further experience from immunotherapy trials in neuro-oncology accumulate.


Assuntos
Imunoterapia , Neoplasias do Sistema Nervoso/terapia , Algoritmos , Progressão da Doença , Humanos , Neoplasias do Sistema Nervoso/diagnóstico , Guias de Prática Clínica como Assunto
14.
Neuro Oncol ; 16 Suppl 7: vii24-35, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25313236

RESUMO

We provide historical and scientific guidance on imaging response assessment for incorporation into clinical trials to stimulate effective and expedited drug development for recurrent glioblastoma by addressing 3 fundamental questions: (i) What is the current validation status of imaging response assessment, and when are we confident assessing response using today's technology? (ii) What imaging technology and/or response assessment paradigms can be validated and implemented soon, and how will these technologies provide benefit? (iii) Which imaging technologies need extensive testing, and how can they be prospectively validated? Assessment of T1 +/- contrast, T2/FLAIR, diffusion, and perfusion-imaging sequences are routine and provide important insight into underlying tumor activity. Nonetheless, utility of these data within and across patients, as well as across institutions, are limited by challenges in quantifying measurements accurately and lack of consistent and standardized image acquisition parameters. Currently, there exists a critical need to generate guidelines optimizing and standardizing MRI sequences for neuro-oncology patients. Additionally, more accurate differentiation of confounding factors (pseudoprogression or pseudoresponse) may be valuable. Although promising, diffusion MRI, perfusion MRI, MR spectroscopy, and amino acid PET require extensive standardization and validation. Finally, additional techniques to enhance response assessment, such as digital T1 subtraction maps, warrant further investigation.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Critérios de Avaliação de Resposta em Tumores Sólidos , Neoplasias Encefálicas/diagnóstico , Ensaios Clínicos como Assunto , Glioblastoma/diagnóstico , Humanos , Imageamento por Ressonância Magnética/tendências , Espectroscopia de Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/tendências
15.
J Neurosurg ; 121(3): 536-42, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25036205

RESUMO

OBJECT: Robust methodology that allows objective, automated, and observer-independent measurements of brain tumor volume, especially after resection, is lacking. Thus, determination of tumor response and progression in neurooncology is unreliable. The objective of this study was to determine if a semi-automated volumetric method for quantifying enhancing tissue would perform with high reproducibility and low interobserver variability. METHODS: Fifty-seven MR images from 13 patients with glioblastoma were assessed using our method, by 2 neuroradiologists, 1 neurosurgeon, 1 neurosurgical resident, 1 nurse practitioner, and 1 medical student. The 2 neuroradiologists also performed traditional 1-dimensional (1D) and 2-dimensional (2D) measurements. Intraclass correlation coefficients (ICCs) assessed interobserver variability between measurements. Radiological response was determined using Response Evaluation Criteria In Solid Tumors (RECIST) guidelines and Macdonald criteria. Kappa statistics described interobserver variability of volumetric radiological response determinations. RESULTS: There was strong agreement for 1D (RECIST) and 2D (Macdonald) measurements between neuroradiologists (ICC = 0.42 and 0.61, respectively), but the agreement using the authors' novel automated approach was significantly stronger (ICC = 0.97). The volumetric method had the strongest agreement with regard to radiological response (κ = 0.96) when compared with 2D (κ = 0.54) or 1D (κ = 0.46) methods. Despite diverse levels of experience of the users of the volumetric method, measurements using the volumetric program remained remarkably consistent in all users (0.94). CONCLUSIONS: Interobserver variability using this new semi-automated method is less than the variability with traditional methods of tumor measurement. This new method is objective, quick, and highly reproducible among operators with varying levels of expertise. This approach should be further evaluated as a potential standard for response assessment based on contrast enhancement in brain tumors.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Imageamento por Ressonância Magnética/métodos , Carga Tumoral , Adulto , Idoso , Progressão da Doença , Humanos , Pessoa de Meia-Idade , Variações Dependentes do Observador , Reprodutibilidade dos Testes
16.
Cancer ; 119(19): 3479-88, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23821555

RESUMO

BACKGROUND: Despite a high radiographic response rate in patients with recurrent glioblastoma following bevacizumab therapy, survival benefit has been relatively modest. We assess whether tumor volume measurements based on baseline and early posttreatment MRI can stratify patients in terms of progression-free survival (PFS) and overall survival (OS). METHODS: Baseline (-4 +/- 4 days) and posttreatment (30 +/- 6 days) MRI exams of 91 patients with recurrent glioblastoma treated with bevacizumab were retrospectively evaluated for volume of enhancing tumor as well as volume of the T2/FLAIR hyperintensity. Overall survival (OS) and progression-free survival (PFS) were assessed using volume parameters in a Cox regression model adjusted for significant clinical parameters. RESULTS: In univariable analysis, residual tumor volume, percentage change in tumor volume, steroid change from baseline to posttreatment scan, and number of recurrences were associated with both OS and PFS. With dichotomization by sample median of 52% change of enhancing volume can stratify OS (52 weeks vs. 31 weeks, P = .013) and PFS (21 weeks vs. 12 weeks, P = .009). Residual enhancing volume, dichotomized by sample median of 7.8 cm(3) , can also stratify for OS (64 weeks vs. 28 weeks, P < .001) and PFS (21 weeks vs. 12 weeks, P = .036). CONCLUSIONS: Volumetric percentage change and absolute early posttreatment volume of enhancing tumor can stratify survival for patients with recurrent glioblastoma receiving bevacizumab therapy.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Inibidores da Angiogênese/efeitos adversos , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Bevacizumab , Neoplasias Encefálicas/diagnóstico , Progressão da Doença , Intervalo Livre de Doença , Feminino , Glioblastoma/diagnóstico , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico , Estudos Retrospectivos , Análise de Sobrevida , Resultado do Tratamento , Adulto Jovem
17.
Future Oncol ; 7(3): 339-54, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21417900

RESUMO

Cilengitide, a cyclicized arginine-glycine-aspartic acid-containing pentapeptide, potently blocks ανß3 and ανß5 integrin activation. Integrins are upregulated in many malignancies and mediate a wide variety of tumor-stroma interactions. Cilengitide and other integrin-targeting therapeutics have preclinical activity against many cancer subtypes including glioblastoma (GBM), the most common and deadliest CNS tumor. Cilengitide is active against orthotopic GBM xenografts and can augment radiotherapy and chemotherapy in these models. In Phase I and II GBM trials, cilengitide and the combination of cilengitide with standard temozolomide and radiation demonstrate consistent antitumor activity and a favorable safety profile. Cilengitide is currently under evaluation in a pivotal, randomized Phase III study (Cilengitide in Combination With Temozolomide and Radiotherapy in Newly Diagnosed Glioblastoma Phase III Randomized Clinical Trial [CENTRIC]) for newly diagnosed GBM. In addition, randomized controlled Phase II studies with cilengitide are ongoing for non-small-cell lung cancer and squamous cell carcinoma of the head and neck. Cilengitide is the first integrin inhibitor in clinical Phase III development for oncology.


Assuntos
Antineoplásicos/uso terapêutico , Glioblastoma/tratamento farmacológico , Integrinas/antagonistas & inibidores , Oligopeptídeos/uso terapêutico , Venenos de Serpentes/uso terapêutico , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Antineoplásicos/farmacocinética , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Indústria Farmacêutica/tendências , Humanos , Oligopeptídeos/efeitos adversos , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Venenos de Serpentes/efeitos adversos , Venenos de Serpentes/química , Venenos de Serpentes/farmacocinética , Resultado do Tratamento
18.
PLoS One ; 6(1): e16031, 2011 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-21298088

RESUMO

Current radiographic response criteria for brain tumors have difficulty describing changes surrounding postoperative resection cavities. Volumetric techniques may offer improved assessment, however usually are time-consuming, subjective and require expert opinion and specialized magnetic resonance imaging (MRI) sequences. We describe the application of a novel volumetric software algorithm that is nearly fully automated and uses standard T1 pre- and post-contrast MRI sequences. T1-weighted pre- and post-contrast images are automatically fused and normalized. The tumor region of interest is grossly outlined by the user. An atlas of the nasal mucosa is automatically detected and used to normalize levels of enhancement. The volume of enhancing tumor is then automatically calculated. We tested the ability of our method to calculate enhancing tumor volume with resection cavity collapse and when the enhancing tumor is obscured by subacute blood in a resection cavity. To determine variability in results, we compared narrowly-defined tumor regions with tumor regions that include adjacent meningeal enhancement and also compared different contrast enhancement threshold levels used for the automatic calculation of enhancing tumor volume. Our method quantified enhancing tumor volume despite resection cavity collapse. It detected tumor volume increase in the midst of blood products that incorrectly caused decreased measurements by other techniques. Similar trends in volume changes across scans were seen with inclusion or exclusion of meningeal enhancement and despite different automated thresholds for tissue enhancement. Our approach appears to overcome many of the challenges with response assessment of enhancing brain tumors and warrants further examination and validation.


Assuntos
Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética/métodos , Carga Tumoral , Algoritmos , Humanos , Métodos
19.
Curr Oncol Rep ; 13(1): 42-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21125354

RESUMO

Advances in molecular genetics have aided the identification of potential biomarkers with significant clinical promise in neurooncology. These advances and the evolution of targeted therapeutics necessitate the development and incorporation of innovative clinical trial designs that can effectively validate and assess the clinical utility of biomarkers. In this article, we review the use and potential of several such designs in neurooncology trials in order to support the development of personalized treatment approaches for brain tumor patients.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Encefálicas/química , Neoplasias Encefálicas/terapia , Ensaios Clínicos como Assunto/métodos , Biologia Molecular/métodos , Medicina de Precisão/métodos , Protocolos Antineoplásicos , Neoplasias Encefálicas/genética , Humanos , Projetos de Pesquisa
20.
J Clin Oncol ; 28(11): 1963-72, 2010 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-20231676

RESUMO

Currently, the most widely used criteria for assessing response to therapy in high-grade gliomas are based on two-dimensional tumor measurements on computed tomography (CT) or magnetic resonance imaging (MRI), in conjunction with clinical assessment and corticosteroid dose (the Macdonald Criteria). It is increasingly apparent that there are significant limitations to these criteria, which only address the contrast-enhancing component of the tumor. For example, chemoradiotherapy for newly diagnosed glioblastomas results in transient increase in tumor enhancement (pseudoprogression) in 20% to 30% of patients, which is difficult to differentiate from true tumor progression. Antiangiogenic agents produce high radiographic response rates, as defined by a rapid decrease in contrast enhancement on CT/MRI that occurs within days of initiation of treatment and that is partly a result of reduced vascular permeability to contrast agents rather than a true antitumor effect. In addition, a subset of patients treated with antiangiogenic agents develop tumor recurrence characterized by an increase in the nonenhancing component depicted on T2-weighted/fluid-attenuated inversion recovery sequences. The recognition that contrast enhancement is nonspecific and may not always be a true surrogate of tumor response and the need to account for the nonenhancing component of the tumor mandate that new criteria be developed and validated to permit accurate assessment of the efficacy of novel therapies. The Response Assessment in Neuro-Oncology Working Group is an international effort to develop new standardized response criteria for clinical trials in brain tumors. In this proposal, we present the recommendations for updated response criteria for high-grade gliomas.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Diagnóstico por Imagem/normas , Glioma/diagnóstico , Glioma/terapia , Ensaios Clínicos como Assunto , Diagnóstico por Imagem/métodos , Guias como Assunto , Humanos , Prognóstico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA