Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Transbound Emerg Dis ; 68(2): 333-346, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32748511

RESUMO

Animal tuberculosis (TB) caused by Mycobacterium tuberculosis complex (MTC) bacteria remains as one of the most significant infectious diseases of livestock, despite decades of eradication programmes and research efforts, in an era where the livestock sector is among the most important and rapidly expanding commercial agricultural segments worldwide. This work provides a global overview of the spatial and temporal trends of reported scientific knowledge of TB in livestock, aiming to gain insights into research subtopics within the animal TB epidemiology domain and to highlight territorial inequalities regarding data reporting and research outputs over the years. To deliver such information, peer-reviewed reports of TB studies in livestock were retrieved from the Web of Science and Google Scholar, systematized and dissected. The validated data set contained 443 occurrence observations, covering the 1981-2020 period (39 years). We highlight a clear move towards transdisciplinary areas and the One Health approach, with a global temporal increase in publications combining livestock with wildlife and/or human components, which reflect the importance of non-prototypical hosts as key to understanding animal TB. It becomes evident that cattle is the main host across works from all continents; however, many regions remain poorly surveyed. TB research in livestock in low-/middle-income countries is markedly growing, reflecting changes in animal husbandry, but also mirroring the globalization era, with a marked increase in international collaboration and capacitation programmes for scientific and technological development. This review gives an overview of the most prolific continents, countries and research fields in animal TB epidemiology, clearly outlining knowledge gaps and key priority topics. The estimated growth trend of livestock production until 2050, particularly in Asia and Africa, in response to human population growth and animal-protein demand, will require further investment in early surveillance and adaptive research to accommodate the higher diversity of livestock species and MTC members and raising the possibility to fine-tune funding schemes.


Assuntos
Gado/microbiologia , Tuberculose Bovina/epidemiologia , Tuberculose/veterinária , África/epidemiologia , Agricultura , Animais , Animais Selvagens/microbiologia , Ásia/epidemiologia , Bovinos , Estudos Epidemiológicos , Internacionalidade , Mycobacterium/classificação , Tuberculose/epidemiologia , Tuberculose/microbiologia , Tuberculose Bovina/microbiologia
2.
Environ Sci Pollut Res Int ; 21(2): 1292-303, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23900954

RESUMO

The objective of this work was to evaluate the efficiency of a solar TiO2-assisted photocatalytic process on amoxicillin (AMX) degradation, an antibiotic widely used in human and veterinary medicine. Firstly, solar photolysis of AMX was compared with solar photocatalysis in a compound parabolic collectors pilot scale photoreactor to assess the amount of accumulated UV energy in the system (Q UV) necessary to remove 20 mg L(-1) AMX from aqueous solution and mineralize the intermediary by-products. Another experiment was also carried out to accurately follow the antibacterial activity against Escherichia coli DSM 1103 and Staphylococcus aureus DSM 1104 and mineralization of AMX by tracing the contents of dissolved organic carbon (DOC), low molecular weight carboxylate anions, and inorganic anions. Finally, the influence of individual inorganic ions on AMX photocatalytic degradation efficiency and the involvement of some reactive oxygen species were also assessed. Photolysis was shown to be completely ineffective, while only 3.1 kJUV L(-1) was sufficient to fully degrade 20 mg L(-1) AMX and remove 61% of initial DOC content in the presence of the photocatalyst and sunlight. In the experiment with an initial AMX concentration of 40 mg L(-1), antibacterial activity of the solution was considerably reduced after elimination of AMX to levels below the respective detection limit. After 11.7 kJUV L(-1), DOC decreased by 71%; 30% of the AMX nitrogen was converted into ammonium and all sulfur compounds were converted into sulfate. A large percentage of the remaining DOC was in the form of low molecular weight carboxylic acids. Presence of phosphate ions promoted the removal of AMX from solution, while no sizeable effects on the kinetics were found for other inorganic ions. Although the AMX degradation was mainly attributed to hydroxyl radicals, singlet oxygen also plays an important role in AMX self-photosensitization under UV/visible solar light.


Assuntos
Amoxicilina/química , Processos Fotoquímicos , Luz Solar , Titânio/química , Poluentes Químicos da Água/química , Amoxicilina/análise , Catálise , Humanos , Luz , Fotólise , Titânio/análise , Raios Ultravioleta , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA