Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Trends Microbiol ; 24(6): 429-430, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27108207

RESUMO

West Nile virus (WNV) remains an important public health problem causing annual epidemics in the United States. Grubaugh et al. observed that WNV genetic divergence is dependent on the vector mosquito species. This suggests that specific WNV vector-bird species pairings may generate novel genotypes that could promote outbreaks.


Assuntos
Culicidae/virologia , Insetos Vetores/virologia , Febre do Nilo Ocidental/transmissão , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/genética , Animais , Aves/virologia , Surtos de Doenças/veterinária , Evolução Molecular , Variação Genética , Genótipo , Humanos , Saúde Pública , Especificidade da Espécie , Estados Unidos , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/patogenicidade
2.
Vector Borne Zoonotic Dis ; 15(2): 147-55, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25700046

RESUMO

Surveillance systems for West Nile virus (WNV) combine several methods to determine the location and timing of viral amplification. The value of each surveillance method must be measured against its efficiency and costs to optimize integrated vector management and suppress WNV transmission to the human population. Here we extend previous comparisons of WNV surveillance methods by equitably comparing the most common methods after standardization on the basis of spatial sampling density and costs, and by estimating optimal levels of sampling effort for mosquito traps and sentinel chicken flocks. In general, testing for evidence of viral RNA in mosquitoes and public-reported dead birds resulted in detection of WNV approximately 2-5 weeks earlier than serological monitoring of sentinel chickens at equal spatial sampling density. For a fixed cost, testing of dead birds reported by the public was found to be the most cost effective of the methods, yielding the highest number of positive results per $1000. Increased spatial density of mosquito trapping was associated with more precise estimates of WNV infection prevalence in mosquitoes. Our findings also suggested that the most common chicken flock size of 10 birds could be reduced to six to seven without substantial reductions in timeliness or sensitivity. We conclude that a surveillance system that uses the testing of dead birds reported by the public complemented by strategically timed mosquito and chicken sampling as agency resources allow would detect viral activity efficiently in terms of effort and costs, so long as susceptible bird species that experience a high mortality rate from infection with WNV, such as corvids, are present in the area.


Assuntos
Galinhas/virologia , Culicidae/virologia , Insetos Vetores/virologia , Doenças das Aves Domésticas/epidemiologia , Febre do Nilo Ocidental/epidemiologia , Vírus do Nilo Ocidental/isolamento & purificação , Animais , California/epidemiologia , Custos e Análise de Custo , Feminino , Humanos , Doenças das Aves Domésticas/virologia , Prevalência , RNA Viral/análise , Vigilância de Evento Sentinela , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA