Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37688113

RESUMO

Low-cost Particulate Matter (PM) sensors offer an excellent opportunity to improve our knowledge about this type of pollution. Their size and cost, which support multi-node network deployment, along with their temporal resolution, enable them to report fine spatio-temporal resolution for a given area. These sensors have known issues across performance metrics. Generally, the literature focuses on the PM mass concentration reported by these sensors, but some models of sensors also report Particle Number Concentrations (PNCs) segregated into different PM size ranges. In this study, eight units each of Alphasense OPC-R1, Plantower PMS5003 and Sensirion SPS30 have been exposed, under controlled conditions, to short-lived peaks of PM generated using two different combustion sources of PM, exposing the sensors' to different particle size distributions to quantify and better understand the low-cost sensors performance across a range of relevant environmental ranges. The PNCs reported by the sensors were analysed to characterise sensor-reported particle size distribution, to determine whether sensor-reported PNCs can follow the transient variations of PM observed by the reference instruments and to determine the relative impact of different variables on the performances of the sensors. This study shows that the Alphasense OPC-R1 reported at least five size ranges independently from each other, that the Sensirion SPS30 reported two size ranges independently from each other and that all the size ranges reported by the Plantower PMS5003 were not independent of each other. It demonstrates that all sensors tested here could track the fine temporal variation of PNCs, that the Alphasense OPC-R1 could closely follow the variations of size distribution between the two sources of PM, and it shows that particle size distribution and composition are more impactful on sensor measurements than relative humidity.

2.
Environ Sci Pollut Res Int ; 29(48): 72908-72928, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35619000

RESUMO

The groundwater vulnerability assessment is known as a useful tool for predicting and prevention of groundwater pollution. This study targets the DRASTIC, evidential belief function (EBF), and logistic regression (LR) models to assess vulnerability in Kabul aquifers, Afghanistan Country. The growth of urban sprawl, groundwater overexploitation, and lack of suitable municipal sewage systems as anthropogenic sources have been the main potential to increase groundwater contaminants such as nitrate in the study area. The vulnerability map has been developed based on various effective factors including altitude, slope (percentage rise), aspect, curvature, land-use type, drainage density, distance from river, annual mean precipitation, net recharge, geology/lithology units, the impact of the vadose zone, aquifer media, depth to water (unsaturated zone), saturated zone, drawdown, and hydraulic conductivity. To identify groundwater pollution, the spatial variation of nitrate concentration data in 2018 was considered indication of groundwater pollution. Based on descriptive statistics, the value of 2.65 mg/l (the median of the pixel values of nitrate map) was selected as a threshold to differentiate the occurrence and non-occurrence of pollution. The groundwater quality data were selected and randomly divided into two datasets for training and validation, including 70% and 30%, respectively. The success-rate and prediction-rate curves were computed based on the receiver operating characteristic (ROC) curve and the area under the curve (AUC) to estimate the efficiency of models. The ROC-AUC of success rates for EBF, LR, and DRASTIC models were estimated to be 67%, 66%, and 52%, respectively. Moreover, the ROC-AUC of the prediction rates of the EBF, LR, and DRASTIC models were obtained 61%, 63%, and 55%, respectively. Based on correlation between mean nitrate concentration and the mean vulnerability indexes in each model, the EBF model is the most compatible with the current developed vulnerability zones as the role of mankind in changing the environment in real conditions in comparison to LR and DRASTIC models.


Assuntos
Água Subterrânea , Poluição da Água , Monitoramento Ambiental/métodos , Modelos Logísticos , Nitratos , Esgotos , Água , Poluição da Água/análise
3.
Sensors (Basel) ; 20(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326452

RESUMO

Airborne particulate matter (PM) exposure has been identified as a key environmental risk factor, associated especially with diseases of the respiratory and cardiovascular system and with almost 9 million premature deaths per year. Low-cost optical sensors for PM measurement are desirable for monitoring exposure closer to the personal level and particularly suited for developing spatiotemporally dense city sensor networks. However, questions remain over the accuracy and reliability of the data they produce, particularly regarding the influence of environmental parameters such as humidity and temperature, and with varying PM sources and concentration profiles. In this study, eight units each of five different models of commercially available low-cost optical PM sensors (40 individual sensors in total) were tested under controlled laboratory conditions, against higher-grade instruments for: lower limit of detection, response time, responses to sharp pollution spikes lasting <1 min , and the impact of differing humidity and PM source. All sensors detected the spikes generated with a varied range of performances depending on the model and presenting different sensitivity mainly to sources of pollution and to size distributions with a lesser impact of humidity. The sensitivity to particle size distribution indicates that the sensors may provide additional information to PM mass concentrations. It is concluded that improved performance in field monitoring campaigns, including tracking sources of pollution, could be achieved by using a combination of some of the different models to take advantage of the additional information made available by their differential response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA