Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 101: 15-26, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31029308

RESUMO

3D-printing and additive manufacturing can be powerful techniques to design customized structures and produce synthetic bone grafts with multifunctional effects suitable for bone repair. In our work we aimed the development of novel multifunctionalized 3D printed poly(lactic acid) (PLA) scaffolds with bioinspired surface coatings able to reduce bacterial biofilm formation while favoring human bone marrow-derived mesenchymal stem cells (hMSCs) activity. For that purpose, 3D printing was used to prepare PLA scaffolds that were further multifunctionalized with collagen (Col), minocycline (MH) and bioinspired citrate- hydroxyapatite nanoparticles (cHA). PLA-Col-MH-cHA scaffolds provide a closer structural support approximation to native bone architecture with uniform macroporous, adequate wettability and an excellent compressive strength. The addition of MH resulted in an adequate antibiotic release profile that by being compatible with local drug delivery therapy was translated into antibacterial activities against Staphylococcus aureus, a main pathogen associated to bone-related infections. Subsequently, the hMSCs response to these scaffolds revealed that the incorporation of cHA significantly stimulated the adhesion, proliferation and osteogenesis-related gene expression (RUNX2, OCN and OPN) of hMSCs. Furthermore, the association of a bioinspired material (cHA) with the antibiotic MH resulted in a combined effect of an enhanced osteogenic activity. These findings, together with the antibiofilm activity depicted strengthen the appropriateness of this 3D-printed PLA-Col-MH-cHA scaffold for future use in bone repair. By targeting bone repair while mitigating the typical infections associated to bone implants, our 3D scaffolds deliver an integrated strategy with the combined effects further envisaging an increase in the success rate of bone-implanted devices.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Colágeno/farmacologia , Durapatita/farmacologia , Minociclina/farmacologia , Nanopartículas/química , Poliésteres/farmacologia , Impressão Tridimensional , Engenharia Tecidual/métodos , Adsorção , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Liberação Controlada de Fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/ultraestrutura , Testes de Sensibilidade Microbiana , Osseointegração/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Staphylococcus aureus/efeitos dos fármacos , Alicerces Teciduais/química
2.
Int J Pharm ; 513(1-2): 697-708, 2016 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-27693709

RESUMO

Given the impact of biofilms in health care environment and the increasing antibiotic resistance and/or tolerance, new strategies for preventing that occurrence in medical devices are obligatory. Thus, biomaterials surface functionalization with active compounds can be a valuable approach. In the present study the ability of the biosurfactants sophorolipids to prevent biofilms formation on silicone rubber aimed for medical catheters was investigated. Sophorolipids produced by Starmerella bombicola, identified by HPLC-MS/MS were used to cover silicone and surface characterization was evaluated through contact angle measurements and FTIR-ATR. Results revealed that sophorolipids presence on silicone surface decreased the hydrophobicity of the material and biofilm formation of Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922. Antibiofilm activity was evaluated through different methods and was more pronounced against S. aureus. Furthermore, biocompatibility of silicone specimens with HaCaT cells was also obtained. From this study it was possible to conclude that sophorolipids seem to be a favourable approach for coating silicone catheters. Such compounds may represent a novel source of antibiofilm agents for technological development passing through strategies of permanent functionalization of surfaces.


Assuntos
Biofilmes/efeitos dos fármacos , Catéteres/microbiologia , Lipídeos/farmacologia , Elastômeros de Silicone , Adsorção , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Humanos , Lipídeos/biossíntese , Lipídeos/química , Octoxinol/química , Saccharomycetales/metabolismo , Elastômeros de Silicone/química , Dodecilsulfato de Sódio/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA