Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 293: 112838, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34087647

RESUMO

Excess phosphorus loading to waterbodies has led to increasing frequency and severity of harmful algal blooms, negatively impacting economic activity and human health. While interventions to improve water quality can create large societal benefits, these investments are costly and the value of benefits is often unknown. Understanding the social and economic impacts of reduced phosphorus loading is critical for developing effective land use policies and for generating public and political support for these initiatives. Here, we quantify the social benefits and costs of improving water quality in Lake Champlain under a range of phosphorus reduction and climate change scenarios between 2016 and 2050. We use statistical models to link water quality outputs from an established integrated assessment model with three categories of benefits: tourism expenditures, property sales, and avoided human health impacts. We estimate the costs of reducing phosphorus loading using data reported by the State of Vermont. We find that under the most aggressive phosphorus reduction scenario, the total benefits of improved water quality are $55 to $60 million between 2016 and 2050. Over this 35 year time horizon, the combined benefits do not outweigh the costs under any scenario. If the time horizon is extended to 2100 or beyond, however, the benefits may exceed the costs if the applied discount rate is less than 3%. Importantly, we almost certainly underestimate the value of clean water, due to the omission of other types of benefits. Despite this uncertainty, our study provides a tractable framework for disentangling the complex relationships between water quality and human well-being, and illuminates the value of reductions in phosphorus loading to society.


Assuntos
Mudança Climática , Fósforo , Análise Custo-Benefício , Humanos , Lagos , Fósforo/análise , Qualidade da Água
2.
J Econ Entomol ; 111(1): 16-25, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29272519

RESUMO

Native managed bees can improve crop pollination, but a general framework for evaluating the associated economic costs and benefits has not been developed. We conducted a cost-benefit analysis to assess how managing blue orchard bees (Osmia lignaria Say [Hymenoptera: Megachildae]) alongside honey bees (Apis mellifera Linnaeus [Hymenoptera: Apidae]) can affect profits for almond growers in California. Specifically, we studied how adjusting three strategies can influence profits: (1) number of released O. lignaria bees, (2) density of artificial nest boxes, and (3) number of nest cavities (tubes) per box. We developed an ecological model for the effects of pollinator activity on almond yields, validated the model with published data, and then estimated changes in profits for different management strategies. Our model shows that almond yields increase with O. lignaria foraging density, even where honey bees are already in use. Our cost-benefit analysis shows that profit ranged from -US$1,800 to US$2,800/acre given different combinations of the three strategies. Adding nest boxes had the greatest effect; we predict an increase in profit between low and high nest box density strategies (2.5 and 10 boxes/acre). In fact, the number of released bees and the availability of nest tubes had relatively small effects in the high nest box density strategies. This suggests that growers could improve profits by simply adding more nest boxes with moderate number of tubes in each. Our approach can support grower decisions regarding integrated crop pollination and highlight the importance of a comprehensive ecological economic framework for assessing these decisions.


Assuntos
Abelhas/fisiologia , Produção Agrícola/economia , Polinização , Prunus dulcis/crescimento & desenvolvimento , Animais , California , Análise Custo-Benefício , Modelos Biológicos , Especificidade da Espécie
3.
Nat Commun ; 8(1): 811, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28993648

RESUMO

Diarrheal disease (DD) due to contaminated water is a major cause of child mortality globally. Forests and wetlands can provide ecosystem services that help maintain water quality. To understand the connections between land cover and childhood DD, we compiled a database of 293,362 children in 35 countries with information on health, socioeconomic factors, climate, and watershed condition. Using hierarchical models, here we find that higher upstream tree cover is associated with lower probability of DD downstream. This effect is significant for rural households but not for urban households, suggesting differing dependence on watershed conditions. In rural areas, the effect of a 30% increase in upstream tree cover is similar to the effect of improved sanitation, but smaller than the effect of improved water source, wealth or education. We conclude that maintaining natural capital within watersheds can be an important public health investment, especially for populations with low levels of built capital.Globally diarrheal disease through contaminated water sources is a major cause of child mortality. Here, the authors compile a database of 293,362 children in 35 countries and find that upstream tree cover is linked to a lower probability of diarrheal disease and that increasing tree cover may lower mortality.


Assuntos
Saúde da Criança , Ecossistema , Rios , População Rural , Saúde da Criança/estatística & dados numéricos , Pré-Escolar , Países em Desenvolvimento , Diarreia/epidemiologia , Disenteria/epidemiologia , Características da Família , Florestas , Humanos , Lactente , Saúde da População Rural/estatística & dados numéricos , População Rural/estatística & dados numéricos , Fatores Socioeconômicos , População Urbana
4.
Proc Natl Acad Sci U S A ; 114(39): 10438-10442, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28893985

RESUMO

Climate change will cause geographic range shifts for pollinators and major crops, with global implications for food security and rural livelihoods. However, little is known about the potential for coupled impacts of climate change on pollinators and crops. Coffee production exemplifies this issue, because large losses in areas suitable for coffee production have been projected due to climate change and because coffee production is dependent on bee pollination. We modeled the potential distributions of coffee and coffee pollinators under current and future climates in Latin America to understand whether future coffee-suitable areas will also be suitable for pollinators. Our results suggest that coffee-suitable areas will be reduced 73-88% by 2050 across warming scenarios, a decline 46-76% greater than estimated by global assessments. Mean bee richness will decline 8-18% within future coffee-suitable areas, but all are predicted to contain at least 5 bee species, and 46-59% of future coffee-suitable areas will contain 10 or more species. In our models, coffee suitability and bee richness each increase (i.e., positive coupling) in 10-22% of future coffee-suitable areas. Diminished coffee suitability and bee richness (i.e., negative coupling), however, occur in 34-51% of other areas. Finally, in 31-33% of the future coffee distribution areas, bee richness decreases and coffee suitability increases. Assessing coupled effects of climate change on crop suitability and pollination can help target appropriate management practices, including forest conservation, shade adjustment, crop rotation, or status quo, in different regions.


Assuntos
Abelhas/classificação , Mudança Climática , Coffea/crescimento & desenvolvimento , Café/economia , Produtos Agrícolas/economia , Produtos Agrícolas/crescimento & desenvolvimento , Polinização/fisiologia , Agricultura/economia , Animais , Abelhas/fisiologia , Ecossistema , Fazendas/economia
5.
Proc Natl Acad Sci U S A ; 112(24): 7348-55, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26082539

RESUMO

The central challenge of the 21st century is to develop economic, social, and governance systems capable of ending poverty and achieving sustainable levels of population and consumption while securing the life-support systems underpinning current and future human well-being. Essential to meeting this challenge is the incorporation of natural capital and the ecosystem services it provides into decision-making. We explore progress and crucial gaps at this frontier, reflecting upon the 10 y since the Millennium Ecosystem Assessment. We focus on three key dimensions of progress and ongoing challenges: raising awareness of the interdependence of ecosystems and human well-being, advancing the fundamental interdisciplinary science of ecosystem services, and implementing this science in decisions to restore natural capital and use it sustainably. Awareness of human dependence on nature is at an all-time high, the science of ecosystem services is rapidly advancing, and talk of natural capital is now common from governments to corporate boardrooms. However, successful implementation is still in early stages. We explore why ecosystem service information has yet to fundamentally change decision-making and suggest a path forward that emphasizes: (i) developing solid evidence linking decisions to impacts on natural capital and ecosystem services, and then to human well-being; (ii) working closely with leaders in government, business, and civil society to develop the knowledge, tools, and practices necessary to integrate natural capital and ecosystem services into everyday decision-making; and (iii) reforming institutions to change policy and practices to better align private short-term goals with societal long-term goals.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Tomada de Decisões , Ecologia/economia , Ecologia/métodos , Ecologia/tendências , Humanos , Política Pública
6.
Nat Commun ; 6: 7414, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26079893

RESUMO

There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments.


Assuntos
Abelhas , Biodiversidade , Conservação dos Recursos Naturais , Produtos Agrícolas , Polinização , Animais , Produtos Agrícolas/economia
7.
Ecol Appl ; 23(5): 1113-23, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23967579

RESUMO

Natural ecosystems benefit human communities by providing ecosystem services such as water purification and crop pollination. Mapping ecosystem service values has become popular, but most are static snapshots of average value. Estimating instead the economic impacts of specific ecosystem changes can better inform typical resource decisions. Here we develop an approach to mapping marginal values, those resulting from the next unit of ecosystem change, across landscapes. We demonstrate the approach with a recent model of crop pollination services in Costa Rica, simulating deforestation events to predict resulting marginal changes in pollination services to coffee farms. We find that marginal losses from deforestation vary from zero to US$700/ha across the landscape. Financial risks for farmers from these losses and marginal benefits of forest restoration show similar spatial variation. Marginal values are concentrated in relatively few forest parcels not identified using average value. These parcels lack substitutes: nearby forest parcels that can supply services in the event of loss. Indeed, the marginal value of forest parcels declines exponentially with the density of surrounding forest cover. The approach we develop is applicable to any ecosystem service. Combined with information on costs, it can help target conservation or restoration efforts to optimize benefits to people and biodiversity.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Polinização , Árvores , Clima Tropical , Agricultura/economia , Animais , Costa Rica , Monitoramento Ambiental , Humanos , Modelos Biológicos
8.
Ying Yong Sheng Tai Xue Bao ; 21(2): 409-14, 2010 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-20462013

RESUMO

Aiming at the fact that the current approaches of evaluating the efficacy of ecosystem provisioning service were lack of spatial information and did not take the accessibility of products into account, this paper established an evaluation model to simulate the spatial distribution of ecosystem provisioning service and its economic value, based on ArcGIS 9. 2 and taking the supply and demand factors of ecosystem products into account. The provision of timber product in Laojunshan in 2000 was analyzed with the model. In 2000, the total physical quantity of the timber' s provisioning service in Laojunshan was 11.12 x 10(4) m3 x a(-1), occupying 3.2% of the total increment of timber stock volume. The total provisioning service value of timber was 6669.27 x 10(4) yuan, among which, coniferous forest contributed most (90.41%). Due to the denser distribution of populations and roads in the eastern area of Laojunshan, some parts of the area being located outside of conservancy district, and forests being in scattered distribution, the spatial distribution pattern of the physical quantity of timber's provisioning service was higher in the eastern than in the western area.


Assuntos
Conservação dos Recursos Naturais/economia , Ecologia/economia , Ecossistema , Árvores/crescimento & desenvolvimento , Madeira/economia , China , Custos e Análise de Custo/economia , Meio Ambiente , Monitoramento Ambiental/economia , Modelos Econômicos
9.
Ecol Lett ; 10(4): 299-314, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17355569

RESUMO

Many ecosystem services are delivered by organisms that depend on habitats that are segregated spatially or temporally from the location where services are provided. Management of mobile organisms contributing to ecosystem services requires consideration not only of the local scale where services are delivered, but also the distribution of resources at the landscape scale, and the foraging ranges and dispersal movements of the mobile agents. We develop a conceptual model for exploring how one such mobile-agent-based ecosystem service (MABES), pollination, is affected by land-use change, and then generalize the model to other MABES. The model includes interactions and feedbacks among policies affecting land use, market forces and the biology of the organisms involved. Animal-mediated pollination contributes to the production of goods of value to humans such as crops; it also bolsters reproduction of wild plants on which other services or service-providing organisms depend. About one-third of crop production depends on animal pollinators, while 60-90% of plant species require an animal pollinator. The sensitivity of mobile organisms to ecological factors that operate across spatial scales makes the services provided by a given community of mobile agents highly contextual. Services vary, depending on the spatial and temporal distribution of resources surrounding the site, and on biotic interactions occurring locally, such as competition among pollinators for resources, and among plants for pollinators. The value of the resulting goods or services may feed back via market-based forces to influence land-use policies, which in turn influence land management practices that alter local habitat conditions and landscape structure. Developing conceptual models for MABES aids in identifying knowledge gaps, determining research priorities, and targeting interventions that can be applied in an adaptive management context.


Assuntos
Abelhas/fisiologia , Ecossistema , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Pólen , Animais , Conservação dos Recursos Naturais , Produtos Agrícolas/economia , Política Pública , Reprodução/fisiologia
10.
PLoS Biol ; 4(11): e360, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17076583

RESUMO

Resources for biodiversity conservation are severely limited, requiring strategic investment. Understanding both the economic benefits and costs of conserving ecosystems will help to allocate scarce dollars most efficiently. However, although cost-benefit analyses are common in many areas of policy, they are not typically used in conservation planning. We conducted a spatial evaluation of the costs and benefits of conservation for a landscape in the Atlantic forests of Paraguay. We considered five ecosystem services (i.e., sustainable bushmeat harvest, sustainable timber harvest, bioprospecting for pharmaceutical products, existence value, and carbon storage in aboveground biomass) and compared them to estimates of the opportunity costs of conservation. We found a high degree of spatial variability in both costs and benefits over this relatively small (approximately 3,000 km(2)) landscape. Benefits exceeded costs in some areas, with carbon storage dominating the ecosystem service values and swamping opportunity costs. Other benefits associated with conservation were more modest and exceeded costs only in protected areas and indigenous reserves. We used this cost-benefit information to show that one potential corridor between two large forest patches had net benefits that were three times greater than two otherwise similar alternatives. Spatial cost-benefit analysis can powerfully inform conservation planning, even though the availability of relevant data may be limited, as was the case in our study area. It can help us understand the synergies between biodiversity conservation and economic development when the two are indeed aligned and to clearly understand the trade-offs when they are not.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/métodos , Análise Custo-Benefício , Ecossistema , Agricultura Florestal , Paraguai
11.
Trends Ecol Evol ; 21(12): 681-7, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17050033

RESUMO

Recent studies that incorporate the spatial distributions of biological benefits and economic costs in conservation planning have shown that limited budgets can achieve substantially larger biological gains than when planning ignores costs. Despite concern from donors about the effectiveness of conservation interventions, these increases in efficiency from incorporating costs into planning have not yet been widely recognized. Here, we focus on what these costs are, why they are important to consider, how they can be quantified and the benefits of their inclusion in priority setting. The most recent work in the field has examined the degree to which dynamics and threat affect the outcomes of conservation planning. We assess how costs fit into this new framework and consider prospects for integrating them into conservation planning.


Assuntos
Conservação dos Recursos Naturais/economia , Ecologia , Custos e Análise de Custo
12.
Proc Natl Acad Sci U S A ; 101(34): 12579-82, 2004 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-15306689

RESUMO

Can economic forces be harnessed for biodiversity conservation? The answer hinges on characterizing the value of nature, a tricky business from biophysical, socioeconomic, and ethical perspectives. Although the societal benefits of native ecosystems are clearly immense, they remain largely unquantified for all but a few services. Here, we estimate the value of tropical forest in supplying pollination services to agriculture. We focus on coffee because it is one of the world's most valuable export commodities and is grown in many of the world's most biodiverse regions. Using pollination experiments along replicated distance gradients, we found that forest-based pollinators increased coffee yields by 20% within approximately 1 km of forest. Pollination also improved coffee quality near forest by reducing the frequency of "peaberries" (i.e., small misshapen seeds) by 27%. During 2000-2003, pollination services from two forest fragments (46 and 111 hectares) translated into approximately 60,000 USD per year for one Costa Rican farm. This value is commensurate with expected revenues from competing land uses and far exceeds current conservation incentive payments. Conservation investments in human-dominated landscapes can therefore yield double benefits: for biodiversity and agriculture.


Assuntos
Café/economia , Produtos Agrícolas/economia , Ecossistema , Árvores , Clima Tropical , Animais , Abelhas/fisiologia , Biodiversidade , Coffea/fisiologia , Humanos , Renda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA