Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 467: 133732, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38350316

RESUMO

The risk characterization of microplastics (MP) in soil is challenging due to the non-alignment of existing exposure and effect data. Therefore, we applied data alignment methods to assess the risks of MP in soils subject to different sources of MP pollution. Our findings reveal variations in MP characteristics among sources, emphasizing the need for source-specific alignments. To assess the reliability of the data, we applied Quality Assurance/Quality Control (QA/QC) screening tools. Risk assessment was carried out probabilistically, considering uncertainties in data alignments and effect thresholds. The Hazardous Concentrations for 5% (HC5) of the species were significantly higher compared to earlier studies and ranged between 4.0 × 107 and 2.3 × 108 particles (1-5000 µm)/kg of dry soil for different MP sources and ecologically relevant metrics. The highest risk was calculated for soils with MP entering via diffuse and unspecified local sources, i.e., "background pollution". However, the source with the highest proportion of high-risk values was sewage, followed by background pollution and mulching. Notably, locations exceeding the risk threshold obtained low scores in the QA/QC assessment. No risks were observed for soils with compost. To improve future risk assessments, we advise to primarily test environmentally relevant MP mixtures and adhere to strict quality criteria.

2.
Mar Pollut Bull ; 196: 115644, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37922592

RESUMO

This study aimed to assess the presence of 21 UVFs and metabolites in coastal regions of the Iberian Peninsula, to evaluate their environmental risk, and identify possible influential factors affecting their measured concentrations. Sampling was carried out in spring and summer to assess possible seasonal variations. UVFs were detected in 43 of the 46 sampling sites. Only 5 were found above LOD: BP4, OC, BP3 and metabolites BP1 and BP8. Samples collected in Mar Menor had the greatest variety of compounds per sample and the highest cumulative concentrations. The risk was characterized using Risk Quotients (RQ). BP1 showed a Low environmental Risk in 2 sites while for OC the RQ indicated a Moderate Risk in 22 points. The variables that contribute most to the variation are population density, sampling season, whether it was an open bay or not, and level of urbanization. The presence of WWTPs had a lower influence.


Assuntos
Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Medição de Risco
3.
Water Res ; 232: 119707, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36773351

RESUMO

Microplastics (MPs) are one of the most widespread contaminants worldwide, yet their risks for freshwater ecosystems have seldom been investigated. In this study, we performed a large monitoring campaign to assess the presence and risks of MPs in Amazonian freshwater ecosystems. We investigated MP pollution in 40 samples collected along 1500 km in the Brazilian Amazon, including the Amazon River, three major tributaries, and several streams next to the most important urban areas. MPs in the 55-5000 µm size range were characterized (size, shape, color) by microscopy and identified (polymer composition) by infrared spectroscopy. Ecotoxicological risks were assessed using chronic Species Sensitivity Distributions for effects triggered by food dilution and tissue translocation using data alignment methods that correct for polydispersity of environmental MPs and bioaccessibility. This study shows that MPs are ubiquitous contaminants in Amazonian freshwater ecosystems, with measured concentrations (55-5000 µm) ranging between 5 and 152 MPs/m3 in the Amazon River and its main tributaries, and between 23 and 74,550 MPs/m3 in urban streams. The calculated Hazardous Concentration for the 5% of species (HC5) derived from the SSDs for the entire MP range (1-5000 µm) were 1.6 × 107 MPs/m3 (95% CI: 1.2 × 106 - 4.0 × 108) for food dilution, and 1.8 × 107 MPs/m3 (95% CI: 1.5 × 106 - 4.3 × 108) for translocation. Rescaled exposure concentrations (1-5000 µm) in the Amazon River and tributaries ranged between 6.0 × 103 and 1.8 × 105 MPs/m3, and were significantly lower than the calculated HC5 values. Rescaled concentrations in urban streams ranged between 1.7 × 105 and 5.7 × 108 MPs/m3, and exceeded both calculated HC5 values in 20% of the locations. This study shows that ecological impacts by MP contamination are not likely to happen in the Amazon River and its major tributaries. However, risks for freshwater organisms may be expected in near densely populated areas, such as the cities of Manaus or Belem, which have limited wastewater treatment facilities.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Rios/química , Ecossistema , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Medição de Risco
4.
Integr Environ Assess Manag ; 19(3): 706-716, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36239162

RESUMO

Gold mining (GM) is a major source of metals and metalloids in rivers, causing severe environmental pollution and increasing the exposure risks to the residents of surrounding areas. Mining in Ecuadorian Amazonia has dramatically increased in recent years, but its impacts on Indigenous local populations that make use of rivers are still unknown. The aim of this study was to assess the risks to adults and children caused by the exposure to metals and metalloids in freshwater ecosystems contaminated with tailings released by GM activities in 11 sites of the upper Napo River basin, Ecuador. We selected a carcinogenic and a noncarcinogenic risk assessment method to estimate the hazard index (HI) and total cancer risk (TCR). The concentration of Ag, Al, As, Cd, Cu, Fe, Mn, Pb, Zn, B, and V in water and sediment samples was considered to assess the risks to human health. The calculated HI was 23-352 times greater than the acceptable limits in all sites for both children and adults. Mn and Fe were the main contributors (75% in water and 99% in sediment) to the total calculated risk based on the HI. The calculated TCR for children and adults exceeded approximately one to three times the permissible threshold in all sites. As and Pb contributed up to 93% of the total calculated risk based on TCR for both children and adults. This study demonstrates that the emission and mobilization of metals and metalloids caused by mining activities increase the risk to human health, to which we recommend further monitoring of freshwater contamination in the area and the implementation of preventive health management measures. Integr Environ Assess Manag 2023;19:706-716. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Metaloides , Metais Pesados , Poluentes do Solo , Criança , Adulto , Humanos , Metais Pesados/análise , Metaloides/análise , Equador , Monitoramento Ambiental/métodos , Ecossistema , Chumbo , Medição de Risco/métodos , Receptores de Antígenos de Linfócitos T , China , Poluentes do Solo/análise
5.
J Hazard Mater ; 441: 129814, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36075174

RESUMO

Determining the risks of microplastics is difficult because data is of variable quality and cannot be compared. Although sediments are important sinks for microplastics, no holistic risk assessment framework is available for this compartment. Here we assess the risks of microplastics in freshwater sediments worldwide, using strict quality criteria and alignment methods. Published exposure data were screened for quality using new criteria for microplastics in sediment and were rescaled to the standard 1-5000 µm microplastic size range. Threshold effect data were also screened for quality and were aligned to account for the polydispersity of environmental microplastics and for their bioaccessible fraction. Risks were characterized for effects triggered by food dilution or translocation, using ingested particle volume and surface area as ecologically relevant metrics, respectively. Based on species sensitivity distributions, we determined Hazardous Concentrations for 5% of the species (HC5, with 95% CI) of 4.9 × 109 (6.6 × 107 - 1.9 × 1011) and 1.1 × 1010 (3.2 × 108 - 4.0 × 1011) particles / kg sediment dry weight, for food dilution and translocation, respectively. For all locations considered, exposure concentrations were either below or in the margin of uncertainty of the HC5 values. We conclude that risks from microplastics to benthic communities cannot be excluded at current concentrations in sediments worldwide.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Água Doce , Sedimentos Geológicos , Microplásticos/toxicidade , Plásticos/toxicidade , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
6.
Glob Chang Biol ; 28(4): 1248-1267, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34735747

RESUMO

Freshwater ecosystems are strongly influenced by weather extremes such as heatwaves (HWs), which are predicted to increase in frequency and magnitude in the future. In addition to these climate extremes, the freshwater realm is impacted by the exposure to various classes of chemicals emitted by anthropogenic activities. Currently, there is limited knowledge on how the combined exposure to HWs and chemicals affects the structure and functioning of freshwater ecosystems. Here, we review the available literature describing the single and combined effects of HWs and chemicals on different levels of biological organization, to obtain a holistic view of their potential interactive effects. We only found a few studies (13 out of the 61 studies included in this review) that investigated the biological effects of HWs in combination with chemical pollution. The reported interactive effects of HWs and chemicals varied largely not only within the different trophic levels but also depending on the studied endpoints for populations or individuals. Hence, owing also to the little number of studies available, no consistent interactive effects could be highlighted at any level of biological organization. Moreover, we found an imbalance towards single species and population experiments, with only five studies using a multitrophic approach. This results in a knowledge gap for relevant community and ecosystem level endpoints, which prevents the exploration of important indirect effects that can compromise food web stability. Moreover, this knowledge gap impairs the validity of chemical risk assessments and our ability to protect ecosystems. Finally, we highlight the urgency of integrating extreme events into multiple stressors studies and provide specific recommendations to guide further experimental research in this regard.


Assuntos
Ecossistema , Água Doce , Humanos
7.
Chemosphere ; 291(Pt 1): 132821, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34758362

RESUMO

The use of pesticides in households and peri-urban areas of the Amazon has increased notably during the last years. Yet, the presence of these contaminants in Amazonian freshwater ecosystems remains unexplored. Here, we assessed the exposure to 18 pesticides and 5 transformation products in the Amazon River and in the urban streams of Manaus, Santarém, Macapá, and Belém (Brazil). Pesticide concentrations were analyzed by liquid and gas chromatography methods. Ecological risks were assessed following a two-tiered approach. First, hazard quotients and an overall hazard index were calculated using toxicity data for standard test species of primary producers, invertebrates, and fish. Second, the pesticides showing moderate-to-high ecological risks in the first tier were evaluated using Species Sensitivity Distributions (SSDs). Our study shows that pesticides are widespread in urban and peri-urban areas of the Brazilian Amazon. The frequency of detection was higher in urban streams than in the Amazon River, with some samples taken in Manaus, Santarém, and Belém containing up to 8 compounds. Most pesticides were measured at relatively low concentrations (ng L-1), except for malathion, carbendazim and the bulk concentration of chlorpyrifos, which were monitored at concentrations above 100 ng L-1. Based on the first-tier assessment, we found moderate-to-high risks for freshwater invertebrates for malathion, chlorpyrifos, and chlorpyrifos-methyl, and moderate risks for malathion to fish. The risk assessment performed with SSDs indicated high risks of malathion and chlorpyrifos-methyl in urban areas, with up to 15% and 5% of invertebrate species potentially affected, respectively. The bulk concentrations of chlorpyrifos resulted in high risks in some urban areas (14-22% of species affected) and in areas of the main river (32-44%) impacted by agriculture. We conclude that pesticide residues may contribute to a biodiversity impact in the Amazon and should be further monitored in urban and peri-urban areas, particularly after heavy rainfall events.


Assuntos
Praguicidas , Poluentes Químicos da Água , Animais , Brasil , Ecossistema , Monitoramento Ambiental , Praguicidas/análise , Praguicidas/toxicidade , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
8.
J Hazard Mater ; 412: 125277, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33951870

RESUMO

The widespread use of pesticides, especially in agricultural areas, makes necessary to control their presence in surrounding surface waters. The current study was designed to investigate the occurrence and ecological risks of pesticides and their transformation products in a Mediterranean river basin impacted by citrus agricultural production. Nineteen sites were monitored in three campaigns distributed over three different seasons. After a qualitative screening, 24 compounds was selected for subsequent quantitative analysis. As expected, the lower section of the river was most contaminated, with total concentration >5 µg/L in two sites near to the discharge area of wastewater treatment plants. The highest concentrations were found in September, after agricultural applications and when the river flow is reduced. Ecological risks were calculated using two mixture toxicity approaches (Toxic Unit and multi-substance Potentially Affected Fraction), which revealed high acute and chronic risks of imidacloprid to invertebrates, moderate-to-high risks of diuron, simazine and 2,4-D for primary producers, and moderate-to-high risks of thiabendazole for invertebrates and fish. This study shows that intensive agricultural production and the discharge of wastewater effluents containing pesticide residues from post-harvest citrus processing plants are threatening freshwater biodiversity. Further actions are recommended to control pesticide use and to reduce emissions.


Assuntos
Citrus , Praguicidas , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Praguicidas/análise , Praguicidas/toxicidade , Medição de Risco , Rios , Espanha , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
9.
Ecotoxicol Environ Saf ; 199: 110669, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32450358

RESUMO

Ciliates are key components of aquatic ecosystems, significantly contributing to the decomposition of organic matter and energy transfer to higher trophic levels. They are considered good biological indicators of chemical pollution and relatively sensitive to heavy metal contamination. In this study, we performed a meta-analysis of the available toxicity data of heavy metals and ciliates to assess: (1) the sensitivity of freshwater ciliates to different heavy metals, (2) the relative sensitivity of ciliates in comparison to the standard test species used in ecotoxicological risk assessment, and (3) the difference in sensitivity across ciliate taxa. Our study shows that the tolerance of ciliates to heavy metals varies notably, which is partly influenced by differences in methodological conditions across studies. Ciliates are, in general, sensitive to Mercury > Cadmium > Copper > Zinc > Lead > Chromium. Also, this study shows that most ciliates are more tolerant to heavy metal pollution than the standard test species used in ecotoxicological risk assessments, i.e., Raphidocelis subcapitata, Daphnia magna, and Onchornyncus mykiss. Threshold concentrations derived from toxicity data for these species is expected to confer sufficient protection for the vast majority of ciliate species. Our data analysis also shows that the most commonly tested ciliate species, Paramecium caudatum and Tetrahymena thermophila, are not necessarily the most sensitive ones to heavy metal pollution. Finally, this study stresses the importance of developing standard toxicity test protocols for ciliates, which could lead to a better comprehension of the toxicological impact of heavy metals and other contaminants to ciliate species.


Assuntos
Cilióforos/efeitos dos fármacos , Ecotoxicologia/métodos , Água Doce/química , Metais Pesados/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Ecossistema , Metais Pesados/análise , Medição de Risco , Testes de Toxicidade , Poluentes Químicos da Água/análise
10.
Chemosphere ; 240: 124966, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31726608

RESUMO

The hepatotoxic cyanotoxins microcystins (MCs) are emerging contaminants naturally produced by cyanobacteria. Yet their ecological role remains unsolved, previous research suggests that MCs have allelopathic effects on competing photosynthetic microorganisms, even eliciting toxic effects on other freshwater cyanobacteria. In this context, the bioluminescent recombinant cyanobacterium Anabaena sp. PCC7120 CPB4337 (hereinafter Anabaena) was exposed to extracts of MCs. These were obtained from eight natural samples from freshwater reservoirs that contained MCs with a concentration range of 0.04-11.9 µg MCs L-1. MCs extracts included the three most common MCs variants (MC-LR, MC-RR, MC-YR) in different proportions (MC-LR: 100-0%; MC-RR: 100-0%; MC-YR: 14.2-0%). The Anabaena bioassay based on bioluminescence inhibition has been successfully used to test the toxicity of many emerging contaminants (e.g., pharmaceuticals) but never for cyanotoxins prior to this study. Exposure of Anabaena to MCs extracts induced a decrease in its bioluminescence with effective concentration decreasing bioluminescence by 50% ranging from 0.4 to 50.5 µg MC L-1 in the different samples. Bioluminescence responses suggested an interaction between MCs variants which was analyzed via the Additive Index method (AI), indicating an antagonistic effect (AI < 0) of MC-LR and MC-RR present in the samples. Additionally, MC extracts exposure triggered an increase of intracellular free Ca2+ in Anabaena. In short, this study supports the use of the Anabaena bioassay as a sensitive tool to assess the presence of MCs at environmentally relevant concentrations and opens interesting avenues regarding the interactions between MCs variants and the possible implication of Ca2+ in the mode of action of MCs towards cyanobacteria.


Assuntos
Bioensaio/métodos , Ecotoxicologia/métodos , Microcistinas/toxicidade , Anabaena/efeitos dos fármacos , Anabaena/metabolismo , Cálcio/metabolismo , Cianobactérias/isolamento & purificação , Cianobactérias/metabolismo , Água Doce/microbiologia
11.
Environ Toxicol Chem ; 38(10): 2279-2293, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31211455

RESUMO

In Europe, the European Food Safety Authority aquatic guidance document describes the procedures for the derivation of regulatory acceptable concentrations (RACs) for pesticides in edge-of-field surface waters on the basis of tier-1 (standard test species), tier-2 (geometric mean and species sensitivity distributions [SSDs]), and tier-3 (model ecosystem studies) approaches. In the present study, the protectiveness of such a tiered approach was evaluated for fungicides. Acute and chronic RACs for tier-1 and tier-2B (SSDs) were calculated using toxicity data for standard and additional test species, respectively. Tier-3 RACs based on ecological thresholds (not considering recovery) could be derived for 18 fungicides. We show that tier-1 RACs, in the majority of cases, are more conservative than RACs calculated based on model ecosystem experiments. However, acute tier-2B RACs do not show a sufficient protection level compared with tier-3 RACs from cosm studies that tested a repeated pulsed exposure regime or when relatively persistent compounds were tested. Chronic tier-2B RACs showed a sufficient protection level, although they could only be evaluated for 6 compounds. Finally, we evaluated the suitability of the calculated RACs for 8 compounds with toxicity data for fungi. The comparison shows that the current RACs for individual fungicides, with a few exceptions (e.g., tebuconazole), show a sufficient protection level for structural and functional fungal endpoints. However, more data are needed to extend this comparison to other fungicides with different modes of action. Environ Toxicol Chem 2019;38:2279-2293. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Ecossistema , Inocuidade dos Alimentos , Água Doce/química , Fungicidas Industriais/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Europa (Continente) , Água Doce/microbiologia , Fungos/efeitos dos fármacos , Praguicidas/toxicidade , Medição de Risco , Especificidade da Espécie , Testes de Toxicidade
12.
Sci Total Environ ; 667: 222-233, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30826681

RESUMO

This study provides a description of the water quality status in the tributaries of the upper Tagus River and a preliminary risk assessment for freshwater organisms. A wide range of physico-chemical parameters, nutrients, metals and organic contaminants (20 pesticides, and 32 point source chemicals, mainly pharmaceuticals) were monitored during spring, summer and autumn of 2016. Monitoring of organic contaminants was performed using conventional grab sampling and passive samples (POCIS). The variation of the different groups of parameters as regards to land use and sampling season was investigated. The prioritization of organic and inorganic contaminants was based on the toxic unit (TU) approach, using toxicity data for algae, invertebrates and fish. Finally, the compliance with the Environmental Quality Standards (EQS) set as part of the Water Framework Directive (WFD) was evaluated for the listed substances. This study shows that the land use characteristics had a large influence on the spatial distribution of the contaminants and other water quality parameters, while temporal trends were only significant for physico-chemical parameters, and marginally significant for insecticides. Acute toxicity is likely to occur for some metals (copper and zinc) in the most impacted sites (TU values close to or above 1). Low acute toxicity was determined for organic contaminants (individual compounds and mixtures) on the basis of grab samples. However, the assessment performed with POCIS samples identified diuron, chlorpyrifos and imidacloprid as potentially hazardous compounds. Several contaminant mixtures that may cause chronic toxicity and that should be considered in future regional chemical monitoring plans were identified. Our study also shows that some metals and pesticides exceeded the WFD regulatory thresholds and that only 30% of the sampled sites had a good chemical status. Further research is needed to identify chemical emission sources and to design proper abatement options in the Tagus river basin.


Assuntos
Peixes , Invertebrados/efeitos dos fármacos , Microalgas/efeitos dos fármacos , Alga Marinha/efeitos dos fármacos , Poluentes Químicos da Água/análise , Qualidade da Água , Agricultura , Animais , Ecologia , Monitoramento Ambiental , Peixes/metabolismo , Agricultura Florestal , Indústrias , Medição de Risco , Rios , Estações do Ano , Espanha , Análise Espaço-Temporal , Poluentes Químicos da Água/efeitos adversos
13.
Integr Environ Assess Manag ; 14(5): 581-585, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30489028

RESUMO

Resilience represents one of the key components of the vulnerability of ecological systems and may refer to different levels of biological organization, from populations to the biosphere. A short description is given on the concept of resilience applied to the levels that are directly involved in ecological risk assessment (ERA): populations, communities, and ecosystems. The opportunities and challenges for measuring and quantifying resilience are discussed. Finally, some suggestions for introducing the resilience concept in regulatory ERA are proposed. Integr Environ Assess Manag 2018;14:581-585. © 2018 SETAC.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Ecologia , Política Ambiental , Medição de Risco
14.
Environ Toxicol Chem ; 37(9): 2281-2295, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30027629

RESUMO

The United Nations' Sustainable Development Goals have been established to end poverty, protect the planet, and ensure prosperity for all. Delivery of the Sustainable Development Goals will require a healthy and productive environment. An understanding of the impacts of chemicals which can negatively impact environmental health is therefore essential to the delivery of the Sustainable Development Goals. However, current research on and regulation of chemicals in the environment tend to take a simplistic view and do not account for the complexity of the real world, which inhibits the way we manage chemicals. There is therefore an urgent need for a step change in the way we study and communicate the impacts and control of chemicals in the natural environment. To do this requires the major research questions to be identified so that resources are focused on questions that really matter. We present the findings of a horizon-scanning exercise to identify research priorities of the European environmental science community around chemicals in the environment. Using the key questions approach, we identified 22 questions of priority. These questions covered overarching questions about which chemicals we should be most concerned about and where, impacts of global megatrends, protection goals, and sustainability of chemicals; the development and parameterization of assessment and management frameworks; and mechanisms to maximize the impact of the research. The research questions identified provide a first-step in the path forward for the research, regulatory, and business communities to better assess and manage chemicals in the natural environment. Environ Toxicol Chem 2018;37:2281-2295. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Meio Ambiente , Pesquisa , Desenvolvimento Sustentável , Biodiversidade , Poluentes Ambientais/toxicidade , Europa (Continente) , Humanos
15.
Proc Natl Acad Sci U S A ; 115(12): 2958-2963, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507224

RESUMO

Food production is a major driver of global environmental change and the overshoot of planetary sustainability boundaries. Greater affluence in developing nations and human population growth are also increasing demand for all foods, and for animal proteins in particular. Consequently, a growing body of literature calls for the sustainable intensification of food production, broadly defined as "producing more using less". Most assessments of the potential for sustainable intensification rely on only one or two indicators, meaning that ecological trade-offs among impact categories that occur as production intensifies may remain unaccounted for. The present study addresses this limitation using life cycle assessment (LCA) to quantify six local and global environmental consequences of intensifying aquaculture production in Bangladesh. Production data are from a unique survey of 2,678 farms, and results show multidirectional associations between the intensification of aquaculture production and its environmental impacts. Intensification (measured in material and economic output per unit primary area farmed) is positively correlated with acidification, eutrophication, and ecotoxicological impacts in aquatic ecosystems; negatively correlated with freshwater consumption; and indifferent with regard to global warming and land occupation. As production intensifies, the geographical locations of greenhouse gas (GHG) emissions, acidifying emissions, freshwater consumption, and land occupation shift from the immediate vicinity of the farm to more geographically dispersed telecoupled locations across the globe. Simple changes in fish farming technology and management practices that could help make the global transition to more intensive forms of aquaculture be more sustainable are identified.


Assuntos
Aquicultura/economia , Animais , Bangladesh , Benchmarking , Comércio , Meio Ambiente , Peixes/fisiologia , Humanos , Modelos Teóricos
16.
Vet Anim Sci ; 5: 10-19, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32734040

RESUMO

Diseases have been recognized as the major obstacle to the shrimp (Penaeus monodon) and prawn (Macrobrachium rosenbergii) aquaculture production in Bangladesh. This study provides an assessment of shrimp and prawn diseases/syndromes, health management practices, and occupational health hazards associated with the handling of chemical and biological products to prevent and treat shrimp and prawn diseases. A survey was conducted using a semi-structured questionnaire with 380 shrimp and prawn farmers in the southwest of Bangladesh during February and June of 2016. The farms were categorized on the basis of the three cropping patterns: shrimp polyculture, prawn polyculture, and shrimp and prawn polyculture. Eight different diseases and/or symptoms were reported by the surveyed farmers. The white spot disease and the broken antenna and rostrum symptom were the most common in shrimp and prawn species, respectively. In total, 35 chemical and biological products (4 antibiotics, 15 disinfectants, 13 pesticides, 2 feed additives and probiotics) were used to treat and/or prevent diseases in the all farm categories. The major constraints for disease management were limited access to disease diagnostic service, inadequate product application information and lack of knowledge on better management practices. Handling chemicals and preparation of medicated feed with bare hands was identified as a potential occupational health hazard. This study suggests improvements in farmers' knowledge and skill in disease diagnostics and health management practices, and appropriate handling of potentially hazardous chemicals.

17.
Environ Sci Pollut Res Int ; 25(14): 13235-13243, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-27530199

RESUMO

The aquatic risk assessment of pesticides in tropical areas has often been disputed to rely on toxicity data generated from tests performed with temperate species. Given the differences in ecosystem structure between temperate and tropical ecosystems, test species other than those used in temperate regions have been proposed as surrogates for tropical aquatic effect assessments. Freshwater shrimps, for example are important components of tropical freshwater ecosystems, both in terms of their role in ecosystem functioning and their economic value. In the present study, available toxicity data of (tropical and sub-tropical) freshwater shrimps for insecticides and fungicides were compiled and compared with those available for Daphnia magna and other aquatic invertebrates. Freshwater shrimps appeared to be especially sensitive to GABA-gated chloride channel antagonist and sodium channel modulator insecticides. However, shrimp taxa showed a moderate and low sensitivity to acetylcholinesterase inhibiting insecticides and fungicides respectively. Implications for the use of freshwater shrimps in tropical pesticide effect assessments and research needs are discussed.


Assuntos
Daphnia/efeitos dos fármacos , Ecotoxicologia/métodos , Monitoramento Ambiental/métodos , Água Doce/química , Praguicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Ecossistema , Invertebrados/efeitos dos fármacos , Medição de Risco , Clima Tropical
18.
Integr Environ Assess Manag ; 13(2): 233-248, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27260272

RESUMO

Current regulatory practice for chemical risk assessment suffers from the lack of realism in conventional frameworks. Despite significant advances in exposure and ecological effect modeling, the implementation of novel approaches as high-tier options for prospective regulatory risk assessment remains limited, particularly among general chemicals such as down-the-drain ingredients. While reviewing the current state of the art in environmental exposure and ecological effect modeling, we propose a scenario-based framework that enables a better integration of exposure and effect assessments in a tiered approach. Global- to catchment-scale spatially explicit exposure models can be used to identify areas of higher exposure and to generate ecologically relevant exposure information for input into effect models. Numerous examples of mechanistic ecological effect models demonstrate that it is technically feasible to extrapolate from individual-level effects to effects at higher levels of biological organization and from laboratory to environmental conditions. However, the data required to parameterize effect models that can embrace the complexity of ecosystems are large and require a targeted approach. Experimental efforts should, therefore, focus on vulnerable species and/or traits and ecological conditions of relevance. We outline key research needs to address the challenges that currently hinder the practical application of advanced model-based approaches to risk assessment of down-the-drain chemicals. Integr Environ Assess Manag 2017;13:233-248. © 2016 SETAC.


Assuntos
Monitoramento Ambiental , Produtos Domésticos/análise , Poluentes Químicos da Água/análise , Água Doce , Estudos Prospectivos , Medição de Risco , Águas Residuárias/química , Águas Residuárias/estatística & dados numéricos , Poluição Química da Água/estatística & dados numéricos
19.
Sci Total Environ ; 568: 498-506, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27328394

RESUMO

The objectives of the current study were to determine the occupational health hazards posed by the application of pesticides in rice-prawn concurrent systems of south-west Bangladesh and to assess their potential risks for the aquatic ecosystems that support the culture of freshwater prawns (Macrobrachium rosenbergii). Information on pesticide use in rice-prawn farming was collected through structured interviews with 38 farm owners held between January and May of 2012. The risks of the pesticide use to human health were assessed through structured interviews. The TOXSWA model was used to calculate pesticide exposure (peak and time-weighted average concentrations) in surface waters of rice-prawn systems for different spray drift scenarios and a simple first tier risk assessment based on threshold concentrations derived from single species toxicity tests were used to assess the ecological risk in the form of risk quotients. The PERPEST model was used to refine the ecological risks when the first tier assessment indicated a possible risk. Eleven synthetic insecticides and one fungicide (sulphur) were recorded as part of this investigation. The most commonly reported pesticide was sulphur (used by 29% of the interviewed farmers), followed by thiamethoxam, chlorantraniliprole, and phenthoate (21%). A large portion of the interviewed farmers described negative health symptoms after pesticide applications, including vomiting (51%), headache (18%) and eye irritation (12%). The results of the first tier risk assessment indicated that chlorpyrifos, cypermethrin, alpha-cypermethrin, and malathion may pose a high to moderate acute and chronic risks for invertebrates and fish in all evaluated spray drift scenarios. The higher tier assessment using the PERPEST model confirmed the high risk of cypermethrin, alpha-cypermethrin, and chlorpyrifos for insects and macro- and micro-crustaceans thus indicating that these pesticides may have severe adverse consequences for the prawn production yields.


Assuntos
Agricultura , Fazendeiros , Fungicidas Industriais/toxicidade , Conhecimentos, Atitudes e Prática em Saúde , Inseticidas/toxicidade , Exposição Ocupacional/efeitos adversos , Animais , Aquicultura , Bangladesh , Humanos , Saúde Ocupacional , Oryza/crescimento & desenvolvimento , Palaemonidae/crescimento & desenvolvimento , Medição de Risco
20.
Integr Environ Assess Manag ; 12(4): 747-58, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26442690

RESUMO

We investigated the appropriateness of several methods, including those recommended in the Aquatic Guidance Document of the European Food Safety Authority (EFSA), for the derivation of chronic Tier-1 regulatory acceptable concentrations (RACs) for insecticides and aquatic organisms. The insecticides represented different chemical classes (organophosphates, pyrethroids, benzoylureas, insect growth regulators, biopesticides, carbamates, neonicotinoids, and miscellaneous). Chronic Tier-1 RACs derived using toxicity data for the standard species Daphnia magna, Chironomus spp., and/or Americamysis bahia, were compared with Tier-3 RACs derived from micro- and mesocosm studies on basis of the ecological threshold option (ETO-RACs). ETO-RACs could be derived for 31 insecticides applied to micro- and mesocosms in single or multiple applications, yielding a total number of 36 cases for comparison. The chronic Tier-1 RACs calculated according to the EFSA approach resulted in a sufficient protection level, except for 1 neonicotinoid (slightly underprotective) and for several pyrethroids if toxicity data for A. bahia were not included. This latter observation can be explained by 1) the fact that A. bahia is the most sensitive standard test species for pyrethroids, 2) the hydrophobic properties of pyrethroids, and 3) the fact that long-term effects observed in (epi) benthic arthropods may be better explained by exposure via the sediment than via overlying water. Besides including toxicity data for A. bahia, the protection level for pyrethroids can be improved by selecting both D. magna and Chironomus spp. as standard test species for chronic Tier-1 derivation. Although protective in the majority of cases, the conservativeness of the recommended chronic Tier-1 RACs appears to be less than an order of magnitude for a relatively large proportion of insecticides when compared with their Tier-3 ETO-RACs. This may leave limited options for refinement of the chronic effect assessment using laboratory toxicity data for additional species. Integr Environ Assess Manag 2016;12:747-758. © 2015 SETAC.


Assuntos
Política Ambiental , Inseticidas/toxicidade , Testes de Toxicidade/normas , Poluentes Químicos da Água/toxicidade , Poluição Química da Água/legislação & jurisprudência , Animais , Organismos Aquáticos , Carbamatos , Chironomidae , Daphnia , Piretrinas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA