Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Integr Environ Assess Manag ; 18(2): 539-554, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34138503

RESUMO

Environmental risk assessment of contaminated soils requires bioindicators that allow the assessment of bioavailability and toxicity of chemicals. Although many bioassays can determine the ecotoxicity of soil samples in the laboratory, few are available and standardized for on-site application. Bioassays based on specific threshold values that assess the in situ and ex situ bioavailability and risk of metal(loid)s and polycyclic aromatic hydrocarbons (PAHs) in soils to the land snail Cantareus aspersus have never been simultaneously applied to the same soils. The aims of this study were to compare the results provided by in situ and ex situ bioassays and to determine their respective importance for environmental risk assessment. The feasibility and reproducibility of the in situ bioassay were assessed using an international ring test. This study used five plots located at a former industrial site and six laboratories participated in the ring test. The results revealed the impact of environmental parameters on the bioavailability of metal(loid)s and PAHs to snails exposed in the field to structured soils and vegetation compared to those exposed under laboratory conditions to soil collected from the same field site (excavated soils). The risk coefficients were generally higher ex situ than in situ, with some exceptions (mainly due to Cd and Mo), which might be explained by the in situ contribution of plants and humus layer as sources of exposure of snails to contaminants and by climatic parameters. The ring test showed good agreement among laboratories, which determined the same levels of risk in most of the plots. Comparison of the bioavailability to land snails and the subsequent risk estimated in situ or ex situ highlighted the complementarity between both approaches in the environmental risk assessment of contaminated soils, namely, to guide decisions on the fate and future use of the sites (e.g., excavation, embankments, and land restoration). Integr Environ Assess Manag 2022;18:539-554. © 2021 SETAC.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Bioensaio , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Reprodutibilidade dos Testes , Medição de Risco , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
2.
Environ Sci Pollut Res Int ; 28(14): 17343-17354, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33398759

RESUMO

An accurate assessment of the environmental risk of soils contaminated by metal(loid)s (MEs) requires quantifying exposure and knowing the toxicity of contaminants transferred to biota. For this purpose, two indices have been developed with the bioindicator Cantareus aspersus to assess exposure (SET: sum of the excess of transfer) and risk (ERITME: evaluation of the risk of the transferred metal elements) of multi-contaminated soils. If the SET and ERITME indices allow characterization of exposure and risk based on unspecific toxicity points, then the link between these indices and real effects on some toxicological endpoints, such as growth or sexual maturation, remains to be demonstrated. For this purpose, sub-adult snails were exposed for 28 days to 38 ME-contaminated soils. Relationships between the SET and/or ERITME indices and health alterations in C. aspersus were determined using Spearman correlations, linear regressions, univariate regression trees, and kinetic models. Relationships were determined between the values of the SET and ERITME indices, bioaccumulation as an indicator of ME bioavailability, and the alteration in physiological endpoints, such as the shell development used as a non-invasive indicator of sexual maturation. The results enabled the determination of three levels of risk according to the differences in reaching sexual maturity: no risk, uncertain, and proven risk depended on whether the value of ERITME was below, in, or beyond the interval [2574-22720], respectively. This study provides the first benchmarks with the SET and ERITME indices to interpret the risk of contaminated soils to snails and to relate the environmental and toxicological bioavailability of ME mixtures.


Assuntos
Poluentes do Solo , Animais , Disponibilidade Biológica , Medição de Risco , Maturidade Sexual , Caramujos , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
3.
Int J Parasitol ; 50(14): 1195-1204, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32896570

RESUMO

The eggs of Echinococcus multilocularis, the infectious stage, are spread into the environment through wild and domestic carnivore faeces. The spatial location of the faeces containing infective E. multilocularis eggs is a key parameter for studying areas of exposure and understanding the transmission processes to the intermediate hosts and humans. Echinococcus multilocularis faecal prevalence is often assessed by detecting E. multilocularis DNA, not necessarily eggs. This work aimed to determine the percentage of faeces containing E. multilocularis eggs in a rural town and its surroundings and whether this level of precision is relevant in assessing exposure to E. multilocularis. For this purpose, we developed a combined molecular and microscopic approach to investigate the E. multilocularis exposure of potential hosts in the environment from field-collected carnivore faeces. Carnivore defecation patterns were then spatialized to study the spatial distribution of E. multilocularis. Faeces were screened for E. multilocularis DNA using a specific real-time quantitative PCR (qPCR). Echinococcus multilocularis eggs were morphologically identified from E. multilocularis-specific qPCR-positive faeces after sucrose flotation and individually confirmed through specific PCR and sequencing. The spatial distribution of E. multilocularis was studied using Kulldorff statistics. Echinococcus multilocularis eggs were identified mostly in fox faeces positive for E. multilocularis DNA by qPCR (n = 27/70) and only from 1 of 15 copro-samples from dogs and 1 of 5 from cats. The faecal prevalence of E. multilocularis DNA and eggs was overdispersed, with the same geographical patterns. These data suggest that E. multilocularis DNA and/or egg detection in carnivore faeces, mainly that of foxes, is appropriate in ecological studies of E. multilocularis transmission.


Assuntos
Equinococose , Echinococcus multilocularis , Animais , Gatos/parasitologia , Cidades , Cães/parasitologia , Equinococose/transmissão , Fezes/parasitologia , Raposas/parasitologia , Contagem de Ovos de Parasitas , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA