Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Scand J Med Sci Sports ; 33(4): 407-419, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36404133

RESUMO

INTRODUCTION: Accurate determination of total daily energy expenditure (TDEE) in athletes is important for optimal performance and injury prevention, but current approaches are insufficiently accurate. We therefore developed an approach to determine TDEE in professional cyclists based on power data, basal metabolic rate (BMR), and a non-exercise physical activity level (PAL) value, and compared energy expenditure (EE) between multi-day and single-day races. METHODS: Twenty-one male professional cyclists participated. We measured: (1) BMR, (2) the relationship between power output and EE during an incremental cycling test, which was used to determine EE during exercise (EEE ), and (3) TDEE using doubly labeled water (DLW). A non-exercise PAL-value was obtained by subtracting EEE from TDEE and dividing this by BMR. RESULTS: Measured BMR was 7.9 ± 0.8 MJ/day, which was significantly higher than predicted by the Oxford equations. A new BMR equation for elite endurance athletes was therefore developed. Mean TDEE was 31.7 ± 2.8 and 27.3 ± 2.8 MJ/day during the Vuelta a España and Ardennes classics, while EEE was 17.4 ± 1.8 and 10.1 ± 1.4 MJ/day, respectively. Non-exercise PAL-values were 1.8 and 2.0 for the Vuelta and Ardennes classics, respectively, which is substantially higher than currently used generic PAL-values. CONCLUSION: We show that the proposed approach leads to a more accurate estimation of non-exercise EE than the use of a generic PAL-value in combination with BMR predictive equations developed for non-elite athletes, with the latter underestimating non-exercise EE by ~28%. The proposed approach may therefore improve nutritional strategies in professional cyclists.


Assuntos
Metabolismo Energético , Água , Humanos , Masculino , Metabolismo Basal , Exercício Físico
2.
Nutrients ; 12(1)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952273

RESUMO

The present study was designed to objectively assess the effects of 3-months submarine deployment on behavioural and metabolic determinants of metabolic health. In 13 healthy, non-obese volunteers, we using stable isotope dilution, and plasma and urinary biochemistry to characterize metabolic health before and after a 3-month submarine deployment. Volunteers worked in 6-h shifts. After deployment, we observed reduced fat-free mass (mean ± SD, -4.1 ± 3.3 kg, p = 0.003) and increased adiposity (21.9 ± 3.2% fat mass to 24.4 ± 4.7%, p = 0.01). Changes in fat-free mass were positively associated with physical activity (+0.8 kg per 0.1 increase in PAL, p = 0.03). The average physical activity level was 1.64 ± 0.26 and total energy expenditure during deployment was 2937 ± 498 kcal/d, while energy intake was 3158 ± 786 kcal/d. Fasting glucose (p = 0.03), and triglycerides (p = 0.01) declined, whereas fasting free fatty acids increased (p = 0.04). Plasma vitamin D and B12 concentrations decreased (-14%, p = 0.04, and -44%, p = 0.001, respectively), and plasma calcium, and magnesium increased (+51%, p = 0.01, and +5%, p = 0.02). Haemoglobin was unchanged, but haematocrit decreased (-2.2 ± 2.1%, p = 0.005). In conclusion, submarine deployment impairs fat-free mass maintenance and promotes adiposity. High physical activity may prevent the decline in fat-free mass. Our study confirms the need to counteract Vitamin D and B12 deficiencies, and suggests impairments in erythrocyte metabolism.


Assuntos
Composição Corporal/fisiologia , Metabolismo Energético/fisiologia , Militares , Adulto , Comportamento , Ingestão de Energia , Humanos , Masculino , Fatores de Tempo , Adulto Jovem
3.
Med Sci Sports Exerc ; 51(3): 568-574, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30363009

RESUMO

PURPOSE: Little data are available on doubly labeled water (DLW) assessed total daily energy expenditure (TDEE) during extreme endurance exercise. Doubly labeled water is considered the gold standard to measure TDEE, but different calculations are being used, which may have a large impact on the results. The aim of the current study was to measure TDEE during the Giro d'Italia and apply two different calculation methods. METHODS: Seven male cyclists (age, 28 ± 5 yr; body mass index, 22.1 ± 2.1 kg·m) completed the 24-d professional cycling race "Giro d'Italia" in which a total distance of 3445 km was covered, including 10 mountain stages. Total daily energy expenditure was measured over the entire duration of the race, with the ingestion of DLW at three different time points. To calculate TDEE and body composition, the isotope dilution space was calculated using two different techniques, the "plateau" and "intercept" technique. RESULTS: The %fat mass at baseline was 7.8% and 16.8% with the plateau and intercept technique respectively and did not significantly change over the course of the race. Total daily energy expenditure was on average 32.3 ± 3.4 MJ·d using the plateau technique versus 28.9 ± 3.2 using the intercept technique, resulting in an average physical activity level (PAL) of 4.37 ± 0.43 versus 3.91 ± 0.39, respectively. The dilution space ratio was on average 1.030 with the plateau and 1.060 with the intercept technique. CONCLUSIONS: Given that the observed dilution space ratio with the plateau technique is similar as the expected ratio from literature and the % fat mass of 7.8% is more realistic for the athletes being studied, we propose the application of the plateau rather than the intercept method, when using DLW during extreme endurance exercise.


Assuntos
Ciclismo/fisiologia , Metabolismo Energético , Resistência Física , Adulto , Atletas , Composição Corporal , Comportamento Competitivo , Óxido de Deutério/análise , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA