Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(27): 15724-15730, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571952

RESUMO

Inbreeding is often avoided in natural populations by passive processes such as sex-biased dispersal. But, in many social animals, opposite-sexed adult relatives are spatially clustered, generating a risk of incest and hence selection for active inbreeding avoidance. Here we show that, in long-tailed tits (Aegithalos caudatus), a cooperative breeder that risks inbreeding by living alongside opposite-sex relatives, inbreeding carries fitness costs and is avoided by active kin discrimination during mate choice. First, we identified a positive association between heterozygosity and fitness, indicating that inbreeding is costly. We then compared relatedness within breeding pairs to that expected under multiple mate-choice models, finding that pair relatedness is consistent with avoidance of first-order kin as partners. Finally, we show that the similarity of vocal cues offers a plausible mechanism for discrimination against first-order kin during mate choice. Long-tailed tits are known to discriminate between the calls of close kin and nonkin, and they favor first-order kin in cooperative contexts, so we conclude that long-tailed tits use the same kin discrimination rule to avoid inbreeding as they do to direct help toward kin.


Assuntos
Cruzamento/métodos , Passeriformes/crescimento & desenvolvimento , Reprodução/genética , Aves Canoras/crescimento & desenvolvimento , Animais , Feminino , Heterozigoto , Endogamia , Masculino , Passeriformes/genética , Comportamento Sexual Animal/fisiologia , Aves Canoras/genética
2.
Behav Ecol ; 30(6): 1700-1706, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31723318

RESUMO

A challenge faced by individuals and groups of many species is determining how resources and activities should be spatially distributed: centralized or decentralized. This distribution problem is hard to understand due to the many costs and benefits of each strategy in different settings. Ant colonies are faced by this problem and demonstrate two solutions: 1) centralizing resources in a single nest (monodomy) and 2) decentralizing by spreading resources across many nests (polydomy). Despite the possibilities for using this system to study the centralization/decentralization problem, the trade-offs associated with using either polydomy or monodomy are poorly understood due to a lack of empirical data and cohesive theory. Here, we present a dynamic network model of a population of ant nests which is based on observations of a facultatively polydomous ant species (Formica lugubris). We use the model to test several key hypotheses for costs and benefits of polydomy and monodomy and show that decentralization is advantageous when resource acquisition costs are high, nest size is limited, resources are clustered, and there is a risk of nest destruction, but centralization prevails when resource availability fluctuates and nest size is limited. Our model explains the phylogenetic and ecological diversity of polydomous ants, demonstrates several trade-offs of decentralization and centralization, and provides testable predictions for empirical work on ants and in other systems.

3.
Biol Lett ; 13(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28250206

RESUMO

Social interactions are often characterized by cooperation within groups and conflict or competition between groups. In certain circumstances, however, cooperation can arise between social groups. Here, we examine the circumstances under which inter-group cooperation is expected to emerge and present examples with particular focus on groups in two well-studied but dissimilar taxa: humans and ants. Drivers for the evolution of inter-group cooperation include overarching threats from predators, competitors or adverse conditions, and group-level resource asymmetries. Resources can differ between groups in both quantity and type. Where the difference is in type, inequalities can lead to specialization and division of labour between groups, a phenomenon characteristic of human societies, but rarely seen in other animals. The ability to identify members of one's own group is essential for social coherence; we consider the proximate roles of identity effects in shaping inter-group cooperation and allowing membership of multiple groups. Finally, we identify numerous valuable avenues for future research that will improve our understanding of the processes shaping inter-group cooperation.


Assuntos
Comportamento Cooperativo , Relações Interpessoais , Animais , Formigas/fisiologia , Comportamento Animal , Evolução Biológica , Comportamento Competitivo , Humanos , Comportamento Social
4.
Ecol Evol ; 6(24): 8846-8856, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28035273

RESUMO

Eusociality is one of the most complex forms of social organization, characterized by cooperative and reproductive units termed colonies. Altruistic behavior of workers within colonies is explained by inclusive fitness, with indirect fitness benefits accrued by helping kin. Members of a social insect colony are expected to be more closely related to one another than they are to other conspecifics. In many social insects, the colony can extend to multiple socially connected but spatially separate nests (polydomy). Social connections, such as trails between nests, promote cooperation and resource exchange, and we predict that workers from socially connected nests will have higher internest relatedness than those from socially unconnected, and noncooperating, nests. We measure social connections, resource exchange, and internest genetic relatedness in the polydomous wood ant Formica lugubris to test whether (1) socially connected but spatially separate nests cooperate, and (2) high internest relatedness is the underlying driver of this cooperation. Our results show that socially connected nests exhibit movement of workers and resources, which suggests they do cooperate, whereas unconnected nests do not. However, we find no difference in internest genetic relatedness between socially connected and unconnected nest pairs, both show high kinship. Our results suggest that neighboring pairs of connected nests show a social and cooperative distinction, but no genetic distinction. We hypothesize that the loss of a social connection may initiate ecological divergence within colonies. Genetic divergence between neighboring nests may build up only later, as a consequence rather than a cause of colony separation.

5.
Behav Ecol ; 27(2): 660-668, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27004016

RESUMO

Resource sharing is an important cooperative behavior in many animals. Sharing resources is particularly important in social insect societies, as division of labor often results in most individuals including, importantly, the reproductives, relying on other members of the colony to provide resources. Sharing resources between individuals is therefore fundamental to the success of social insects. Resource sharing is complicated if a colony inhabits several spatially separated nests, a nesting strategy common in many ant species. Resources must be shared not only between individuals in a single nest but also between nests. We investigated the behaviors facilitating resource redistribution between nests in a dispersed-nesting population of wood ant Formica lugubris. We marked ants, in the field, as they transported resources along the trails between nests of a colony, to investigate how the behavior of individual workers relates to colony-level resource exchange. We found that workers from a particular nest "forage" to other nests in the colony, treating them as food sources. Workers treating other nests as food sources means that simple, pre-existing foraging behaviors are used to move resources through a distributed system. It may be that this simple behavioral mechanism facilitates the evolution of this complex life-history strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA