Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(60): 125915-125930, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38008845

RESUMO

Air pollution in opencast coal mine areas is a critical issue, resulting in harmful severe effects on human health. Therefore, it is essential to understand the air pollution factors and to assess the risks to humans. This study evaluated the potential risks (carcinogen and non-carcinogen) of inhalation exposure to PM10-bound heavy metals and Polycyclic Aromatic Hydrocarbons (PAHs) in an open pit mine in northern Colombia. During February-May 2022, PM10 samples were collected at eight sites. Heavy metals (i.e., Al, Cr(VI), Mn, Cu, Zn, As, Pb) and PAHs (thirteen priority PAHs, and one non-priority PAH) levels linked to PM10 were analyzed by X-ray fluorescence and gas chromatography-mass spectrometry, respectively. PM10 concentrations were found to range between 4.70 and 59.90 µg m-3. Out of the three different zones of the study area (i.e., North Zone, South Zone, and Populated Zone), the North Zone recorded the highest daily average concentrations of Cr(VI) (104.16 ng m-3), Mn (28.39 ng m-3), Cu (33.75 ng m-3), Zn (57.99 ng m-3), As (44.92 ng m-3), and Pb (27.13 ng m-3). The fraction of the analyzed heavy metals at all monitoring sites was 82%-89% for Al, followed by Cr(VI) with 3%-6%. Cr(VI) was the major contributor to the carcinogenic risk values, while Cu, Cr(VI), and As were the main drivers for the non-carcinogenic risk. The average cancer risk range for heavy metals was 3.30 × 10-04 -5.47 × 10-04. On the other hand, the cancer risk for PAHs exposure was acceptable. The average incremental lifetime cancer risk (ILCR) values varied between 2.87 × 10-07 and 4.21 × 10-07. Benzo[a]pyrene contributed to 54%-56% of the total risk from inhalation of PM10-bound PAHs, while Indeno[1,2,3-cd]pyrene contributed to 16%-19%. Based on the Monte Carlo sensitivity analysis, exposure to Cr(VI) was the main factor affecting cancer risk in the North, South, and Populated Zones. A suitable risk assessment and management plan requires understanding PM10-bound heavy metals and PAHs concentration levels as well as their potential health risks, mainly in open-cast coal mine zones. Our study found that people living near open-pit mines face potential health risks, so it is crucial to establish policies and regulations to control emission sources.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Neoplasias , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Material Particulado/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , América Latina , Chumbo/análise , Medição de Risco , Carcinógenos/análise , Metais Pesados/análise , Carvão Mineral/análise , China
2.
Air Qual Atmos Health ; 16(5): 897-912, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819789

RESUMO

Air pollution is considered the world's most important environmental and public health risk. The annual exposure for particulate matter (PM) in the northern Caribbean region of Colombia between 2011 and 2019 was determined using PM records from 25 monitoring stations located within the area. The impact of exposure to particulate matter was assessed through the updated Global Burden of Disease health risk functions using the AirQ+ model for mortality attributable to acute lower respiratory disease (in children ≤ 4 years); mortality in adults aged > 18 years old attributable to chronic obstructive pulmonary disease, ischaemic heart disease, lung cancer, and stroke; and all-cause post-neonatal infant mortality. The proportions of the prevalence of bronchitis in children and the incidence of chronic bronchitis in adults attributable to PM exposure were also estimated for the population at risk. Weather Research and Forecasting-California PUFF (WRF-CALPUFF) modeling systems were used to estimate the spatiotemporal trends and calculate mortality relative risk due to prolonged PM2.5 exposure. Proportions of mortality attributable to long-term exposure to PM2.5 were estimated to be around 11.6% of ALRI deaths in children ≤ 4 years of age, 16.1% for COPD, and 26.6% for IHD in adults. For LC and stroke, annual proportions attributable to PM exposure were estimated to be 9.1% and 18.9%, respectively. An estimated 738 deaths per year are directly attributed to particulate matter pollution. The highest number of deaths per year is recorded in the adult population over 18 years old with a mean of 401 events. The mean risk in terms of the prevalence of bronchitis attributable to air pollution in children was determined to be 109 per 100,000 inhabitants per year. The maximum RR values for mortality (up 1.95%) from long-term PM2.5 exposure were predicted to correspond to regions downwind to the industrial zone. Supplementary information: The online version contains supplementary material available at 10.1007/s11869-023-01304-5.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA