Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Ano de publicação
País de afiliação
Intervalo de ano de publicação
1.
Braz Oral Res ; 37: e081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37672415

RESUMO

This study tested a novel in vitro dental erosion-abrasion model and the performance of cross-polarization optical coherence tomography (CP-OCT) in longitudinally monitoring the simulated lesions. Thirty human enamel specimens were prepared and randomized to receive three dental erosion-abrasion (EA) protocols: severe (s-EA, lemon juice/pH:2.5/4.25%w/v citric acid), moderate (m-EA, grapefruit juice/pH:3.5/1.03%w/v citric acid) and no-EA (water, control). EA challenge was performed by exposing the specimens to acidic solutions 4x/day and to brushing 2x/day with 1:3 fluoridated toothpaste slurry, for 14 days. Enamel thickness measurements were obtained using CP-OCT at baseline (D0), 7 (D7) and 14 days (D14) and micro-computed tomography (micro-CT) at D14. Enamel surface loss was measured with both CP-OCT and optical profilometry at D0, D7 and D14. Data was analyzed with repeated-measures ANOVA and Pearson's correlation (r) (α = 0.05). CP-OCT enamel thickness decreased over time in the s-EA group (D0 >D7 > D14, p < 0.001) and m-EA group (D0 > D14, p = 0.019) but did not change in the no-EA group (p = 0.30). Overall, CP-OCT and micro-CT results at D14 correlated moderately (r = 0.73). CP-OCT surface loss was highest for s-EA (p <0.001) but did not differ between moderate and no-EA (p = 0.25). Enamel surface loss with profilometry increased with severity (no-EA>m-EA>s-EA, p < 0.001). D14 surface loss was higher than D7 for both methods except for the no-EA group with profilometry. CP-OCT and profilometry had moderate overall correlation (r = 0.70). Our results revealed that the currently proposed in vitro dental erosion-abrasion model is valid and could simulate lesions of different severities over time. CP-OCT was a suitable method for monitoring the EA lesions.


Assuntos
Tomografia de Coerência Óptica , Erosão Dentária , Humanos , Erosão Dentária/diagnóstico por imagem , Microtomografia por Raio-X , Ácido Cítrico , Esmalte Dentário/diagnóstico por imagem
2.
Diagnostics (Basel) ; 13(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37568931

RESUMO

This study proposed using enamel surface texture and thickness for the objective detection and monitoring of erosive tooth wear (ETW), comparing them to the standard subjective Basic Erosive Wear Evaluation (BEWE). Thirty-two subjects (n = 597 teeth) were enrolled in this longitudinal observational clinical study. Enamel thickness (by cross-polarization optical coherence tomography, CP-OCT) and 3D dental microwear parameters, i.e., area-scale fractal complexity (Asfc), anisotropy (Str), and roughness (Sa) (by white-light scanning confocal profilometry), were obtained from buccal surfaces. Buccal, occlusal, and lingual surfaces were scored for BEWE and the maximum score per tooth (BEWEMax) was determined at baseline and 12 months (M12). Data outcome relationships were evaluated (alpha = 0.05). Enamel thickness decreased (p < 0.001), BEWE scores, Sa, and Str increased (p < 0.001), while Asfc did not change at M12. Baseline BEWEBuccal correlated strongly with BEWEMax (r = 0.86, p < 0.001) and moderately with BEWELingual (r = 0.42, p < 0.001), but not with enamel thickness (r = 0.03, p = 0.43). Change (Δ) in surface texture outcomes correlated poorly but significantly with ΔBEWEBuccal (r = -0.15-0.16, p < 0.001) and did not correlate with Δenamel thickness (r = 0.02-0.09, p > 0.06). Teeth with BEWE progression revealed a greater increase in ΔSa and ΔStr. These findings suggest that enamel surface roughness can potentially determine ETW severity, and CP-OCT may be relevant for clinically monitoring enamel thickness.

3.
Braz. oral res. (Online) ; 37: e081, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS, BBO - Odontologia | ID: biblio-1505910

RESUMO

Abstract: This study tested a novel in vitro dental erosion-abrasion model and the performance of cross-polarization optical coherence tomography (CP-OCT) in longitudinally monitoring the simulated lesions. Thirty human enamel specimens were prepared and randomized to receive three dental erosion-abrasion (EA) protocols: severe (s-EA, lemon juice/pH:2.5/4.25%w/v citric acid), moderate (m-EA, grapefruit juice/pH:3.5/1.03%w/v citric acid) and no-EA (water, control). EA challenge was performed by exposing the specimens to acidic solutions 4x/day and to brushing 2x/day with 1:3 fluoridated toothpaste slurry, for 14 days. Enamel thickness measurements were obtained using CP-OCT at baseline (D0), 7 (D7) and 14 days (D14) and micro-computed tomography (micro-CT) at D14. Enamel surface loss was measured with both CP-OCT and optical profilometry at D0, D7 and D14. Data was analyzed with repeated-measures ANOVA and Pearson's correlation (r) (α = 0.05). CP-OCT enamel thickness decreased over time in the s-EA group (D0 >D7 > D14, p < 0.001) and m-EA group (D0 > D14, p = 0.019) but did not change in the no-EA group (p = 0.30). Overall, CP-OCT and micro-CT results at D14 correlated moderately (r = 0.73). CP-OCT surface loss was highest for s-EA (p <0.001) but did not differ between moderate and no-EA (p = 0.25). Enamel surface loss with profilometry increased with severity (no-EA>m-EA>s-EA, p < 0.001). D14 surface loss was higher than D7 for both methods except for the no-EA group with profilometry. CP-OCT and profilometry had moderate overall correlation (r = 0.70). Our results revealed that the currently proposed in vitro dental erosion-abrasion model is valid and could simulate lesions of different severities over time. CP-OCT was a suitable method for monitoring the EA lesions.

4.
J Biophotonics ; 14(9): e202100090, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34105881

RESUMO

This clinical study tested cross-polarization optical coherence tomography (CP-OCT) monitoring of erosive tooth wear (ETW). Twenty participants completed a 14-day/arm, 3-arm crossover study simulating different ETW severities. Participants received two enamel specimens (per arm) and were randomized to: severe (s-ETW, lemon juice/pH:2.5/4.25%wt/vol citric acid), moderate (m-ETW, grapefruit juice/pH:3.5/1.03%wt/vol citric acid), and non-ETW (water). Enamel thickness was measured with CP-OCT (day[D] 0, 7, 14) and micro-computed tomography (µ-CT; D14). Enamel surface loss was determined with CP-OCT and optical profilometry (OP; D7, D14). CP-OCT showed higher enamel surface loss for D14 than D7 for m-ETW (P = .009) and s-ETW (P = .040) and differentiated severity at D14 (s-ETW > non-ETW, P = .027). OP was able to differentiate surface loss between days (D7 < D14, P < .001) for m-ETW and s-ETW, and ETW severity effect after 7 and 14 days (non-ETW < m-ETW < s-ETW, P < .001). At D14, CP-OCT and µ-CT were positively correlated (r = .87, ICC = .62). CP-OCT showed potential as a tool for clinical ETW monitoring.


Assuntos
Erosão Dentária , Desgaste dos Dentes , Estudos Cross-Over , Humanos , Tomografia de Coerência Óptica , Erosão Dentária/diagnóstico por imagem , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA