Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(5): 6857-6873, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38153577

RESUMO

The presence of natural estrogens estrone (E1), 17ß-estradiol (E2), estriol (E3) and synthetic estrogen 17α-ethynylestradiol (EE2) in the aquatic environment has raised concerns because of their high potency as endocrine disrupting chemicals. The European Commission (EC) established a Watch List of contaminants of emerging concerns including E1, E2 and EE2. The proposed environmental quality standards (EQSs) are 3.6, 0.4, 0.035 ng/L, for E1, E2, EE2, respectively. A thorough evaluation of analytical procedures developed by several studies aiming to perform sampling campaigns in different European countries highlighted that the required limits of quantification in surface water were not reached, especially for EE2 and to a lesser extent for E2. Moreover, data regarding the occurrence of these contaminants in Belgian surface water are very limited. A sampling campaign was therefore performed on a wide range of rivers in Belgium (accounting for a total of 63 samples). The detection frequencies of E1, E2, E3 and EE2 were 100, 98, 86 and 48%, respectively. E1 showed the highest mean concentration (= 4.433 ng/L). In contrast, the mean concentration of EE2 was 0.042 ng/L. The risk quotients (RQs) were calculated based on the respective EQS of each analyte. The frequency of exceedance of the EQS was 31.7% for E1, EE2, while it increased to 44.4% for E2. The extent of exceedance of the EQS, represented by the 95th percentile of the RQ dataset, was higher than 1 for E1, E2, EE2. The use of a confusion matrix was investigated to try to predict the risk posed by E2, EE2, based on the concentration of E1.


Assuntos
Estrogênios , Poluentes Químicos da Água , Estrogênios/análise , Bélgica , Água , Estradiol/análise , Medição de Risco , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
2.
Sci Total Environ ; 838(Pt 1): 155912, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35588819

RESUMO

The complex mixtures of contaminants released in wastewater treatment plant (WWTP) effluents are a major source of pollution for aquatic ecosystems. The present work aimed to assess the environmental risk posed by WWTP effluents by applying a multi-biomarker approach on caged rainbow trout (Oncorhynchus mykiss) juveniles. Fish were caged upstream and downstream of a WWTP for 21 days. To evaluate fish health, biomarkers representing immune, reproductive, nervous, detoxification, and antioxidant functions were assayed. Biomarker responses were then synthesized using an Integrated Biomarker Response (IBR) index. The IBR highlighted similar response patterns for the upstream and downstream sites. Caged juvenile females showed increased activities of innate immune parameters (lysozyme and complement), histological lesions and reduced glycogen content in the hepatic tissue, and higher muscle cholinergic metabolism. However, the intensity of the observed effects was more severe downstream of the WWTP. The present results suggest that the constitutive pollution level of the Meuse River measured upstream from the studied WWTP can have deleterious effects on fish health condition, which are exacerbated by the exposure to WWTP effluents. Our results infer that the application of IBR index is a promising tool to apply with active biomonitoring approaches as it provides comprehensive information about the biological effects caused by point source pollution such as WWTP, but also by the constitutive pollutions levels encountered in the receiving environment.


Assuntos
Oncorhynchus mykiss , Poluentes Químicos da Água , Purificação da Água , Animais , Monitoramento Biológico , Biomarcadores/metabolismo , Ecossistema , Monitoramento Ambiental/métodos , Feminino , Oncorhynchus mykiss/metabolismo , Águas Residuárias/análise , Águas Residuárias/toxicidade , Poluentes Químicos da Água/análise
3.
Ecotoxicol Environ Saf ; 208: 111407, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068981

RESUMO

The use of a multi-biomarker approach with three-spined sticklebacks (Gasterosteus aculeatus) through an active biomonitoring strategy appears to be a promising tool in water quality assessment. The present work proposes to assess the efficiency of these tools in the discrimination of some sites in a large scale on the Meuse basin in Europe. The study was part of an EU program which aims to assess water quality in the Meuse across the French-Belgian border. Sticklebacks were caged 21 days upstream and downstream from the wastewater treatment plants (WWTPs) of Namur (Belgium), Charleville-Mézières (France), Bouillon (Belgium) and Avesnes-sur-Helpe (France). First, the state of a variety of physiological functions was assessed using a battery of biomarkers that represented innate immunity (leucocyte mortality and distribution, phagocytosis activity, respiratory burst), antioxidant system (GPx, CAT, SOD and total GSH content), oxidative damages to the membrane lipids (TBARS), biotransformation enzymes (EROD, GST), synaptic transmission (AChE) and reproduction system (spiggin and vitellogenin concentration). The impacts of the effluents were first analysed for each biomarker using a mixed model ANOVA followed by post-hoc analyses. Secondly, the global river contamination was assessed using a principal component analysis (PCA) followed by a hierarchical agglomerative clustering (HAC). The results highlighted a small number of effects of WWTP effluents on the physiological parameters in caged sticklebacks. Despite a significant effect of the "localisation" factor (upstream/downstream) in the mixed ANOVA for several biomarkers, post-hoc analyses revealed few differences between upstream and downstream of the WWTPs. Only a significant decrease of innate immune responses was observed downstream from the WWTPs of Avesnes-sur-Helpe and Namur. Other biomarker responses were not impacted by WWTP effluents. However, the multivariate analyses (PCA and HAC) of the biomarker responses helped to clearly discriminate the different study sites from the reference but also amongst themselves. Thus, a reduction of general condition (condition index and HSI) was observed in all groups of caged sticklebacks, associated with a weaker AChE activity in comparison with the reference population. A strong oxidative stress was highlighted in fish caged in the Meuse river at Charleville-Mézières whereas sticklebacks caged in the Meuse river at Namur exhibited weaker innate immune responses than others. Conversely, sticklebacks caged in the Helpe-Majeure river at Avesnes-sur-Helpe exhibited higher immune responses. Furthermore, weak defence capacities were recorded in fish caged in the Semois river at Bouillon. This experiment was the first to propose an active biomonitoring approach using three-spined stickleback to assess such varied environments. Low mortality and encouraging results in site discrimination support the use of this tool to assess the quality of a large number of water bodies.


Assuntos
Smegmamorpha/fisiologia , Poluentes Químicos da Água/análise , Qualidade da Água , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Monitoramento Ambiental , Europa (Continente) , Proteínas de Peixes , França , Estresse Oxidativo , Rios , Smegmamorpha/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Vitelogeninas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA