Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Sci Total Environ ; 926: 171672, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38485014

RESUMO

Medical devices have increased in complexity where there is a pressing need to consider design thinking and specialist training for manufacturers, healthcare and sterilization providers, and regulators. Appropriately addressing this consideration will positively inform end-to-end supply chain and logistics, production, processing, sterilization, safety, regulation, education, sustainability and circularity. There are significant opportunities to innovate and to develop appropriate digital tools to help unlock efficiencies in these important areas. This constitutes the first paper to create an awareness of and to define different digital technologies for informing and enabling medical device production from a holistic end-to-end life cycle perspective. It describes the added-value of using digital innovations to meet emerging opportunities for many disposable and reusable medical devices. It addresses the value of accessing and using integrated multi-actor HUBs that combine academia, industry, healthcare, regulators and society to help meet these opportunities. Such as cost-effective access to specialist pilot facilities and expertise that converges digital innovation, material science, biocompatibility, sterility assurance, business model and sustainability. It highlights the marked gap in academic R&D activities (PRISMA review of best publications conducted between January 2010 and January 2024) and the actual list of U.S. FDA's approved and marketed artificial intelligence/machine learning (AI/ML), and augmented reality/virtual reality (AR/VR) enabled-medical devices for different healthcare applications. Bespoke examples of benefits underlying future use of digital tools includes potential implementation of machine learning for supporting and enabling parametric release of sterilized products through efficient monitoring of critical process data (complying with ISO 11135:2014) that would benefit stakeholders. This paper also focuses on the transformative potential of combining digital twin with extended reality innovations to inform efficiencies in medical device design thinking, supply chain and training to inform patient safety, circularity and sustainability.


Assuntos
Inteligência Artificial , Setor de Assistência à Saúde , Humanos , Tecnologia Digital , Indústrias , Escolaridade
2.
Biomedicines ; 11(8)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37626713

RESUMO

Antimicrobial resistance (AMR) has become a topic of great concern in recent years, with much effort being committed to developing alternative treatments for resistant bacterial pathogens. Drug combinational therapies have been a major area of research for several years, with modern iterations using combining well-established antibiotics and other antimicrobials with the aim of discovering complementary mechanisms. Previously, we characterised four GRAS antimicrobials that can withstand thermal polymer extrusion processes for novel medical device-based and therapeutic applications. In the present study, four antimicrobial bioactive-silver nitrate, nisin, chitosan and zinc oxide-were assessed for their potential combined use as an alternative synergistic treatment for AMR bacteria via a broth microdilution assay based on a checkerboard format. The bioactives were tested in arrangements of two-, three- and four-drug combinations, and their interactions were determined and expressed in terms of a synergy score. Results have revealed interesting interactions based on treatments against recognised test bacterial strains that cause human and animal infections, namely E. coli, S. aureus and S. epidermidis. Silver nitrate was seen to greatly enhance the efficacy of its paired treatment. Combinations with nisin, which is a lantibiotic, exhibited the most interesting results, as nisin has no effect against Gram-negative bacteria when used alone; however, it demonstrated antimicrobial effects when combined with silver nitrate or chitosan. This study constitutes the first study to both report on practical three- and four-drug combinational assays and utilise these methods for the assessment of established and emerging antimicrobials. The novel methods and results presented in this study show the potential to explore previously unknown drug combination compatibility measures in an ease-of-use- and high-throughput-based format, which can greatly help future research that aims to identify appropriate alternative treatments for AMR, including the screening of potential new bioactives biorefined from various sources.

3.
Sci Total Environ ; 761: 144094, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33360652

RESUMO

Life cycle assessment (LCA) has been widely applied in many different sectors, but the marine products and seafood segment have received relatively little attention in the past. In recent decades, global fish production experienced sustained growth and peaked at about 179 million tonnes in 2018. Consequently, increased interest in the environmental implications of fishery products along the supply chain, namely from capture to end of life, was recently experienced by society, industry and policy-makers. This timely review aims to describe the current framework of LCA and its application to the seafood sector that mainly focused on fish extraction and processing, but it also encompassed the remaining stages. An excess of 60 studies conducted over the last decade, along with some additional publications, were comprehensively reviewed; these focused on the main LCA methodological choices, including but not limited to, functional unit, system boundaries allocation methods and environmental indicators. The review identifies key recommendations on the progression of LCA for this increasingly important sustaining seafood sector. Specifically, these recommendations include (i) the need for specific indicators for fish-related activities, (ii) the target species and their geographical origin, (iii) knowledge and technology transfer and, (iv) the application and implementation of key recommendations from LCA research that will improve the accuracy of LCA models in this sector. Furthermore, the review comprises a section addressing previous and current challenges of the seafood sector. Wastewater treatment, ghost fishing or climate change, are also the objects of discussion together with advocating support for the water-energy-food nexus as a valuable tool to minimize environmental negativities and to frame successful synergies.


Assuntos
Mudança Climática , Alimentos Marinhos , Animais , Estágios do Ciclo de Vida
4.
Sci Total Environ ; 603-604: 627-638, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28654878

RESUMO

Contamination of receiving waters with pharmaceutical compounds is of pressing concern. This constitutes the first study to report on the development of a semi-quantitative risk assessment (RA) model for evaluating the environmental threat posed by three EU watch list pharmaceutical compounds namely, diclofenac, 17-beta-estradiol and 17-alpha-ethinylestradiol, to aquatic ecosystems using Irish data as a case study. This RA model adopts the Irish Environmental Protection Agency Source-Pathway-Receptor concept to define relevant parameters for calculating low, medium or high risk score for each agglomeration of wastewater treatment plant (WWTP), which include catchment, treatments, operational and management factors. This RA model may potentially be used on a national scale to (i) identify WWTPs that pose a particular risk as regards releasing disproportionally high levels of these pharmaceutical compounds, and (ii) help identify priority locations for introducing or upgrading control measures (e.g. tertiary treatment, source reduction). To assess risks for these substances of emerging concern, the model was applied to 16 urban WWTPs located in different regions in Ireland that were scored for the three different compounds and ranked as low, medium or high risk. As a validation proxy, this case study used limited monitoring data recorded at some these plants receiving waters. It is envisaged that this semi-quantitative RA approach may aid other EU countries investigate and screen for potential risks where limited measured or predicted environmental pollutant concentrations and/or hydrological data are available. This model is semi-quantitative, as other factors such as influence of climate change and drug usage or prescription data will need to be considered in a future point for estimating and predicting risks.


Assuntos
Monitoramento Ambiental , Preparações Farmacêuticas/análise , Medição de Risco , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Irlanda
5.
Biomed Mater ; 5(3): 35002, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20404400

RESUMO

This study investigated the toxicity of N-vinyl-2-pyrrolidone-acrylic acid copolymer hydrogels crosslinked with ethylene glycol dimethacrylate or poly(ethylene glycol) dimethacrylate. There is a pressing need to establish the toxicity status of these new copolymers because they may find applications in future wound healing processes. Investigations revealed that the capacity of these hydrogels for swelling permitted the retention of high amounts of water yet still maintaining structural integrity. Reverse phase HPLC analysis suggested that unreacted monomeric base material was efficiently removed post-polymerization by applying an additional purification process. Subsequently, in vitro toxicity testing was performed utilizing direct and indirect contact exposure of the polymers to human keratinocytes (HaCaT) and human hepatoma (HepG2) cells. No indication of significant cell death was observed using the established MTT, neutral red (NR) and fluorescence-based toxicity endpoint indicators. In addition, the alkaline Comet assay showed no genotoxic effects following cell exposure to hydrogel extracts. Investigations at the nucleotide level using the Ames mutagenicity assay demonstrated no evidence of mutagenic activity associated with the polymers. Findings from this study demonstrated that these hydrogels are non-cytotoxic and further work can be carried out to investigate their potential as a wound-healing device that will impact positively on patient health and well-being.


Assuntos
Hidrogéis/química , Queratinócitos/citologia , Previsões , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato , Metacrilatos , Polietilenoglicóis/química , Polímeros/química , Pirrolidinonas , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA